$\S 9.3$ (Part 1): Branch \& Bound Method for Pure IPs

1.] Solve the following IP using the Branch-and-Bound method:

$$
\begin{array}{cc}
\text { Maximize: } & z=5 x_{1}+4 x_{2} \\
\text { Subject to: } & x_{1}+x_{2} \leq 5 \\
10 x_{1}+6 x_{2} \leq 45 \\
x_{1}, x_{2} \geq 0, x_{1}, x_{2} \text { integer }
\end{array}
$$

a.) Solve the LP Relaxation problem:

b.) Label on the graph above the feasible space for the IP. What seems to be the optimal solution for the IP?
2.] Using x_{1} as the branching variable, divide the solution space into two regions: one with $x_{1} \leq 3$ and $x_{1} \geq 4$. Write down the corresponding LPs for each subregion, labeling the LP with $x_{1} \leq 3$ as LP2 and the LP with $x_{1} \geq 4$ as LP3. Solve LP2 first, establish a lower bound on z, then solve LP3.

3.] What is the solution to the IP?
4.] Discuss the procedure if we would have solved LP3 first.

