§8.3: Maximum Flow Problems
1.] For the network given below, set up an LP that will find the maximum flow from source to sink.

Decision Varriibles
$X_{i j}=$ amount of flow from node i to node j. Ogecthie Function:

$$
\begin{aligned}
& \max _{a} z=x_{50,1}+x_{50,2} \\
& \max z=x_{3, s i}+x_{4,3 i}
\end{aligned}
$$

Constrains:

$$
\begin{aligned}
& x_{50,1}=x_{13}+x_{12} \\
& \text { (Caservation) } \\
& \begin{array}{l}
x_{30,2}+x_{12}+x_{32}=x_{24} \\
x_{13}+x_{43}=x_{32}+x_{3,3 i}
\end{array} \quad \text { (Capacity) } \\
& x_{5,1} \leq 7 \quad x_{3,5 i} \leq 2 \\
& \begin{array}{ll}
x_{5,2} \leq 3 \\
x_{12} \leq 1 & x_{4,3 i} \leq 4 \\
x_{13} \leq 6
\end{array} \quad x_{42} \leq 2 \\
& \begin{array}{ll}
x_{5,2} \leq 3 & x_{4,3 i} \leq 4 \\
x_{12} \leq 1 & x_{42} \leq 2 \\
x_{13} \leq 6
\end{array} \\
& \begin{array}{ll}
x_{5,2} \leq 3 & x_{4,3 i} \leq 4 \\
x_{12} \leq 1 & x_{42} \leq 2 \\
x_{13} \leq 6
\end{array} \\
& \begin{array}{ll}
x_{5,2} \leq 3 & x_{4,3 i} \leq 4 \\
x_{12} \leq 1 & x_{42} \leq 2 \\
x_{15} \leq 6 & x_{12} \geq 0
\end{array} \\
& \begin{array}{ll}
x_{5,2} \leq 3 & x_{4,3 i} \leq 4 \\
x_{12} \leq 1 & x_{42} \leq 2 \\
x_{13} \leq 6
\end{array} \\
& x_{24}=x_{43}+x_{4,5 i} \\
& \begin{array}{ll}
x_{24} \leq 8 \\
x_{12} \leq 3
\end{array} \quad x_{i j} \geq 0 \\
& x_{32} \leq 3
\end{aligned}
$$

2.] Seven types of packages are to be delivered by five trucks. There are three packages of each type, and the capacities of the five trucks are $6,4,5,4$, and 3 , respectively. Set up a maximum flow problem that can be used to determine whether the packages can be loaded so that no truck carries two packages of the same type.

3.] Chicken feed is transported by trucks from three silos to four farms. Some of the silos cannot ship directly to some of the farms. The capacities of the other routes are limited by the number of trucks available and the number of trips made daily. The following table shows the daily amounts of supply at the silos and the demand at the farms (in thousands of pounds). The cell entries of the table specify the daily capacities of the associated routes.

Farms

Silo	I	$I I$	$I I I$	$I V$	Supply
1	30	5	0	40	$\mathbf{2 0}$
2	0	0	5	90	$\mathbf{2 0}$
3	100	40	30	40	$\mathbf{2 0 0}$
Demand	$\mathbf{2 0 0}$	$\mathbf{1 0}$	$\mathbf{6 0}$	$\mathbf{2 0}$	

Sketch a graph representation of this problem and formulate an LP to be solved in Excel to determine the schedule that satisfies the most demand. Will the proposed schedule satisfy all the demand at the
farms?

Farms

Action Varaibles:

$X_{\text {si } i}=$ chetenen feed supply at silo $i(i=1,3,3)$
$x_{i, 3, i}=$ chitter feed dencanal at form $\dot{j}(i=(2,3,4)$
$y_{i, j}=$ amount of crieken feed supplied from silo i to farm j.
Obecitwie faction:
$\operatorname{Max} z=\sum_{i=1}^{3} x_{x, i}$
or $\max z=\sum_{j=1}^{4} x_{j, 50}$

Constraints:

