$\S 8.2$ (Part 3): Transportation Formulation of Shortest Path
1.] Consider the network given below. The graph shows the permissible routes and their lengths in miles between city 1 (node 1) and four other cities (nodes 2 to 5).

Use the grids below to formulate the shortest path problem (a) from node 1 to node 5 , and (b) from node 1 to node 2.

From Excel:
From Excel:
Shortest Path: $1-3-5$

$$
M_{\text {in }} D \text { Alkene }=90
$$

$$
M_{\text {in }} D_{\text {Butane }}=55
$$

2.] Consider the network given below. The graph shows the permissible routes and their lengths in miles between city 1 (node 1) and seven other cities (nodes 2 to 8).

Use the grids below to formulate the shortest path problem (a) from node 1 to node $\%$, and (b) from node y_{2} to node $/ 6$

From Excel:
Shortest Path: 1-3-2-5-6-7

$$
\text { Min Distance }=11
$$

$$
\text { Min Distance }=6
$$

