§6.9: Duality and Sensitivity Analysis for Objective Function Coefficients and New Activities

1.] SugarCo manufactures three types of candy bar: Whatchamacallit, Peanut Chews, and Abba-Zabba. Each bar consists totally of sugar and chocolate. The compositions of each type of candy bar and the profit earned from each candy bar are in the table below. Fifty oz of sugar and 100 oz of chocolate are available. To maximize profits, SugarCo formulates the following LP:

	Sugar (ounces)	Chocolate (ounces)	Profit (cents)
Whatchamacallit	1.5	$\not 2.75$	3
Peanut Chews	1	3	7
Abba-Zabba	1	1	5

$$
\begin{aligned}
\text { Maximize: } & z=3 x_{1}+7 x_{2}+5 x_{3} \\
\text { Subject to: } \quad x_{1}+x_{2}+x_{3} & \leq 50 \\
2 x_{1}+3 x_{2}+x_{3} & \leq 100 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

The optimal tableau is

Row	Basic	z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	RHS
0	z	1	3	0	0	4	1	300
1	x_{3}	0	$\frac{1}{2}$	0	1	$\frac{3}{2}$	$-\frac{1}{2}$	25
2	x_{2}	0	$\frac{1}{2}$	1	0	$-\frac{1}{2}$	$\frac{1}{2}$	25

a.) For what values of profit on the Whatchamacallit does the current basis remain optimal?

- Change 3 to c_{1}.
- First constant of the Dual: $y_{1}+2 y_{2} \geq c_{1}$

$$
\begin{aligned}
& \text { lug in dual sol } \longrightarrow 4+2(1) \geq C_{1} \\
& y_{1}=4, y_{2}=1 \\
& 6 \geq C_{1}
\end{aligned}
$$

- Whatchamacallit can make a max profit of 6 cents under the current basis.
b.) If a Whatchamacallit used 0.5 oz of sugar and 0.75 oz of chocolate, would the current basis remain optimal?

$$
\text { Pere, } \begin{aligned}
& a_{11}=.5 \text { od } a_{21}=.75 . \\
& a_{11} y_{1}+a_{21} y_{2} \geq 3 \\
&(.5)(4)+(.75)(1) \geq 3 \\
& 2.75 \ngtr 3
\end{aligned}
$$

x_{2}, x_{3} is no byes an optimal basis.
c.) SugarCo is considering making an Idaho Spud that yields $\$ 0.10$ profit and uses 2 oz of sugar and 1 oz of chocolate. Does the current basis remain optimal?
Adding the following:

Pacino Spud

$$
\begin{aligned}
& a_{14} y_{1}+a_{24} y_{2} \geq c_{4} \\
&(2)(4)+(1)(1) \geqslant 10 \\
& 9 \geqslant 10
\end{aligned}
$$

Bess would change. It is worth it to mate Spuds from Idaho. because the cost to produce it (a cents) is less then the profit made (10 vents).

