§6.8: Shadow Prices

1.] A company manufactures two products (1 and 2). Each unit of product 1 can be sold for $\$ 15$, and each unit of product 2 can be sold for $\$ 25$. Each product requires raw material and two types of labor (skilled and unskilled) (see the table below). Currently, the company has available 100 hours of skilled labor, 70 hours of unskilled labor, and 30 units of raw material. Because of marketing considerations, at least 3 units of product 2 must be produced. The relevant LP is given below.

	Product	
Resource	1	2
Skilled Labor (hours)	3	4
Unskilled Labor (hours)	2	3
Raw Material (units)	1	2

$$
\begin{aligned}
& \text { Maximize: } \quad z=15 x_{1}+25 x_{2} \\
& \text { Subject to: } \quad 3 x_{1}+4 x_{2} \leq 100 \\
& 2 x_{1}+3 x_{2} \leq 70 \\
& x_{1}+2 x_{2} \leq 30 \\
& x_{2} \geq 3 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Suppose Row 0 of the optimal tableau is

Row	Basic	z	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	e_{4}	a_{4}	RUS
0	z	1	0	0	0	0	15	5	$(M-5)$	435

a.) How much would the company be willing to pay for an extra unit of raw material?

The shadow prove of raw material is $y_{3}=15$. Hence, they'd be willing to pay $\$ 15$ for 1 suit of saw maternal
b.) Assuming the current basis remains optimal, what would the company's revenue be if 35 units of raw material were available?

c.) Assuming the current basis remains optimal, what would the company's revenue be if 80 hours of

$$
\begin{aligned}
& \text { skilled labor were available? } \\
&\left.J_{b_{1}}=-20 \quad \text { (new top }\right)=\text { (Old toot) }+D_{1} y_{1} \\
&=435+(-20)(0)=\$ 435
\end{aligned}
$$

d.) Assuming the current basis remains optimal, what would the company's revenue be if at least 5 units of product 2 were required?

$$
\begin{aligned}
\Delta b_{4}=2 \quad\left(\text { New } z_{\text {op }} t\right) & =\left(01 d r_{0 p} t\right)+\Delta b_{4} y_{4} \\
& =435+(2)(-5)=\$ 425
\end{aligned}
$$

2.] The ToyCo company uses three operations to assemble three types of toys - trains, trucks, and cars. The daily available times for the three operations are 430,460 , and 420 minutes, respectively, and the revenues per unit of toy train, truck, and car are $\$ 3, \$ 2$, and $\$ 5$, respectively. The assembly times per train at the three operations are 1,3 , and 1 minutes, respectively. The corresponding times per train and per car are $(2,0,4)$ and $(1,2,0)$, respectively. Letting x_{1}, x_{2}, and x_{3} be the daily number of units assembled of trains, trucks, and cars, respectively, the associated LP and optimal tableau are given as:

Maximize: $\quad z=3 x_{1}+2 x_{2}+5 x_{3}$

$$
\text { Subject to: } \begin{aligned}
x_{1}+2 x_{2}+x_{3} & \leq 430 \\
3 x_{1}+2 x_{3} & \leq 460 \\
x_{1}+4 x_{2} & \leq 420 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Row	Basic	z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	s_{3}	RHS
0	z	1	4	0	0	1	2	0	1350
1	x_{2}	0	$-\frac{1}{4}$	1	0	$\frac{1}{2}$	$-\frac{1}{4}$	0	100
2	x_{3}	0	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	0	230
3	s_{3}	0	2	0	0	-2	1	1	20

a.) What is the feasibility range of operation 1 ?

Ready the entries of B^{-1}, we must have

$$
\begin{array}{ll}
x_{1}=100+\frac{1}{2} \Delta b_{1}-\frac{1}{4} A b_{2} & \geq 0 \\
x_{2}=230+\frac{1}{2} A b_{2} & \geq 0 \\
x_{3}=20-2 \Delta b_{1}+\Delta b_{2}+1 \Delta b_{3} \geq 0
\end{array}
$$

let $\Delta_{b_{2}}=\mathrm{O}_{\mathrm{b}_{3}}=0$, then

$$
\begin{array}{rll}
100+\frac{1}{2} \Delta b_{1} & \geq 0 \\
230 & \geq 0 \\
20-2 \Delta b_{1} & 20
\end{array} \Rightarrow \begin{aligned}
& 1 b_{1} \geq-200 \\
&
\end{aligned} \quad 1 b_{1} \leq 10
$$

\Rightarrow Feasibility Range: $230 \leq b_{1} \leq 440$
b.) Suppose the availabilities of operations 1,2 , and 3 are changed to 438,500 , and 410 minutes, respectively. Use the set of simultaneous conditions to show that the current basis remains feasible, and determine the new optimal value using the shadow prices.
Using the conditions above, we set $A b_{1}=8, \Delta b_{2}=40$, and $\Delta b_{3}=-10$, then the new opting solution under these charges would be

$$
\begin{aligned}
& \left.x_{1}=100+\frac{1}{2}(8)-\frac{1}{4} / 40\right)=100+4-10=94 \geq 0 \\
& x_{2}=230+\frac{1}{2}(40)=230+20=250 \geq 0 \\
& x_{3}=20-2(8)+40-10=20-16+30=34 \geq 0
\end{aligned}
$$

Suave they're all non-negative, this basis is still optimal.

