§6.7 (PART 2): THE DUALITY THEOREM

1.] Consider the following LP:

Maximize: $z = 2x_1 + 4x_2 + 4x_3 - 3x_4$

Subject to: $x_1 + x_2 + x_3 = 4$ $x_1 + 4x_2 + x_4 = 8$ $x_1, x_2, x_3, x_4 \ge 0$

a.) Identify, from the primal problem, the vectors \boldsymbol{c} and \boldsymbol{b} , and the matrix A.

b.) Suppose x_2 and x_3 comprise the optimal basis to the primal problem. Determine c_B , B, and B^{-1} . Then, show that it is optimal by computing \bar{c}_j for the non-basic variables. c.) Write the dual problem.

 $d.)\,$ Find the optimal solutions to the primal and dual, and verify the Dual Theorem.