$\S 6.7$ (part 2): The Duality Theorem

1.] Consider the following LP:

$$
\begin{aligned}
& \text { Maximize: } \quad z=2 x_{1}+4 x_{2}+4 x_{3}-3 x_{4} \\
& \text { Subject to: } \quad x_{1}+x_{2}+x_{3}=4 \\
& x_{1}+4 x_{2}+x_{4}=8 \\
& x_{1}, x_{2}, x_{3}, x_{4}
\end{aligned} \frac{\geq}{} \begin{aligned}
& \text { Su }
\end{aligned}
$$

a.) Identify, from the primal problem, the vectors \boldsymbol{c} and \boldsymbol{b}, and the matrix A.
b.) Suppose x_{2} and x_{3} comprise the optimal basis to the primal problem. Determine \boldsymbol{c}_{B}, B, and B^{-1}. Then, show that it is optimal by computing \bar{c}_{j} for the non-basic variables.
c.) Write the dual problem.
d.) Find the optimal solutions to the primal and dual, and verify the Dual Theorem.

