$\S 6.7$ (Part 2): The Duality Theorem
1.] Consider the following LP:

Maximize: $\quad z=2 x_{1}+4 x_{2}+4 x_{3}-3 x_{4}$

$$
\begin{array}{rlrl}
\text { Subject to: } x_{1}+x_{2}+x_{3} & =4 & \vec{C}=\left[\begin{array}{llll}
2 & 4 & 4 & -3
\end{array}\right] \\
x_{1}+4 x_{2}+x_{4} & =8 \\
x_{1}, x_{2}, x_{3}, x_{4} & \geq 0 & \vec{b} & =\left[\begin{array}{l}
4 \\
8
\end{array}\right]
\end{array} \quad A=\left[\begin{array}{llll}
\overrightarrow{a_{1}} & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

a.) Identify, from the primal problem, the vectors \boldsymbol{c} and \boldsymbol{b}, and the matrix A.

$$
\begin{array}{lll}
\vec{C}=\left[\begin{array}{llll}
2 & 4 & 4 & -3
\end{array}\right] & A=\left[\begin{array}{llll}
\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3} & \vec{a}_{4} \\
1 & 1 & 1 & 0 \\
1 & 4 & 0 & 1
\end{array}\right]
\end{array}
$$

b.) Suppose x_{2} and x_{3} comprise the optimal basis to the primal problem. Determine $\boldsymbol{c}_{B V}, B$, and B^{-1}. Then, show that it is optimal by computing \bar{c}_{j} for the non-basic variables.

$$
\vec{C}_{B}=\left[\begin{array}{ll}
4 & 4
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 1 \\
4 & 0
\end{array}\right] \rightarrow B^{-1}=\frac{1}{-4}\left[\begin{array}{cc}
0 & -1 \\
-4 & 1
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 / 4 \\
1 & -1 / 4
\end{array}\right]
$$

Reduced Costs (Row 0 caffs) for non-basin varrialdes:

$$
\text { - } \begin{align*}
\overline{C_{1}}=\vec{C}_{B} B^{-1} \vec{a}_{1}-C_{1} & =\left[\begin{array}{ll}
4 & 4
\end{array}\right]\left[\begin{array}{ll}
0 & 1 / 4 \\
1 & -1 / 4
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]-2 \\
& =\left[\begin{array}{ll}
4 & 4
\end{array}\right]\left[\begin{array}{l}
1 / 4 \\
3 / 4
\end{array}\right]-2=(1+3)-2=2>0 \\
\bar{C}_{4}=\vec{C}_{B} B^{-1} \vec{a}_{4}-C_{4} & =\left[\begin{array}{ll}
4 & 4
\end{array}\right]\left[\begin{array}{ll}
0 & 1 / 4 \\
1 & -1 / 4
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]-(-3) \\
& =\left[\begin{array}{ll}
4 & 4
\end{array}\right]\left[\begin{array}{c}
1 / 4 \\
-1 / 4
\end{array}\right]+3=(1-1)+3=3>0
\end{align*}
$$

Slice both reduced costs are positive, we know the basis $\left\{x_{2}, x_{3}\right\}$ is optimal.
c.) Write the dual problem.

Dual LP: Minimize $\omega=4 y_{1}+8 y_{2}$
Subject to

$$
\begin{aligned}
y_{1}+y_{2} & \geq 2 \\
y_{1}+4 y_{2} & \geq 4 \\
y_{1} & \geq 4 \\
y_{2} & \geq-3 \\
y_{1}, y_{2} & \text { uss }
\end{aligned}
$$

d.) Find the optimal solutions to the primal and dual, and verify the Dual Theorem. Solution \& Primal $L P$:

$$
\begin{aligned}
\vec{x}_{B} & =B^{-1} \vec{b} \rightarrow\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 / 4 \\
1 & -1 / 4
\end{array}\right]\left[\begin{array}{l}
4 \\
8
\end{array}\right]=\left[\begin{array}{l}
0(4)+\frac{1}{4}(8) \\
1(4)-\frac{1}{4}(8)
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right] \\
\cdot \text { opt } & =\vec{C}_{B} \vec{x}_{B}=[44]\left[\begin{array}{l}
2 \\
2
\end{array}\right]=8+8=16 \\
& \Rightarrow x_{1}=0, x_{2}=2, x_{3}=2, x_{4}=0 ; z_{u p t}=16
\end{aligned}
$$

Solution p Dual LP:

$$
\begin{aligned}
& \vec{y}=\vec{C}_{B} B^{-1} \rightarrow\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right]=\left[\begin{array}{ll}
4 & 4
\end{array}\right]\left[\begin{array}{cc}
0 & 1 / 4 \\
1 & -1 / 4
\end{array}\right]=\left[\begin{array}{ll}
4 & 0
\end{array}\right] \\
& \cdot w_{\text {opt }}=\vec{y} \vec{b}=\left[\begin{array}{ll}
4 & 0
\end{array}\right]\left[\begin{array}{l}
4 \\
8
\end{array}\right]=16+0=16
\end{aligned}
$$

$$
\Rightarrow \quad y_{1}=4 \quad y_{2}=0 ; \quad w_{u p t}=16
$$

