$\S 6.7$ (Part 1): The Duality Theorem

1.] Prove: If the primal is unbounded, then the dual problem is infeasible.
2.] For the following LP,

$$
\begin{aligned}
& \text { Maximize: } \quad z=-x_{1}+5 x_{2} \\
& \text { Subject to: } \quad x_{1}+2 x_{2} \leq 0.5 \\
& -x_{1}+3 x_{2} \leq 0.5 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

the Row 0 of the optimal tableau is

Row	Basic	z	x_{1}	x_{2}	s_{1}	s_{2}	RHS
0	z	1	0	0	0.4	1.4	$? ?$

What is the optimal z-value of the given LP?
3.] Consider the following LP:

$$
\begin{aligned}
\text { Maximize: } & z=-2 x_{1}-x_{2}+x_{3} \\
\text { Subject to: } \quad x_{1}+x_{2}+x_{3} & \leq 3 \\
x_{2}+x_{3} & \geq 2 \\
x_{1}+x_{3} & =1 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

The Row 0 of the optimal tableau is

Row	Basic	z	x_{1}	x_{2}	x_{3}	s_{1}	e_{2}	a_{2}	a_{3}	RHS
0	z	1	4	0	0	0	1	$(M-1)$	$(M+2)$	0

What is the optimal solution to the dual LP? Verify that the optimal objective value function for the dual is the same as the primal.

