§6.7 (PART 1): THE DUALITY THEOREM

1.] Prove: If the primal is unbounded, then the dual problem is infeasible.

2.] For the following LP,

Maximize:
$$z = -x_1 + 5x_2$$

Subject to:
$$x_1 + 2x_2 \le 0.5$$

 $-x_1 + 3x_2 \le 0.5$
 $x_1, x_2 \ge 0$

the Row 0 of the optimal tableau is

Row	Basic	z	x_1	x_2	s_1	s_2	RHS
0	z	1	0	0	0.4	1.4	??

What is the optimal z-value of the given LP?

3.] Consider the following LP:

Maximize:
$$z = -2x_1 - x_2 + x_3$$

Subject to: $x_1 + x_2 + x_3 \le 3$
 $x_2 + x_3 \ge 2$
 $x_1 + x_3 = 1$
 $x_1, x_2, x_3 \ge 0$

The Row 0 of the optimal tableau is

Row	Basic	z	x_1	x_2	x_3	s_1	e_2	a_2	a_3	RHS
0	z	1	4	0	0	0	1	(M - 1)	(M + 2)	0

What is the optimal solution to the dual LP? Verify that the optimal objective value function for the dual is the same as the primal.