6.7 (part 1): The Duality Theorem

1.] Prove: If the primal is unbounded, then the dual problem is infeasible.

Prode: bok at the contrapositive:
It the dual is feasible, then the printed is bounded.
let j be a feasible solution to the dual. Let
$$\dot{x}$$
 be
any feasible solution to the printed. By weak Dualthy,
 $Z = \tilde{C}T\tilde{X} \leq \tilde{b}\tilde{y} = \omega$
so the printed is bounded.

2.] For the following LP,

Maximize: $z = -x_1 + 5x_2$ Subject to: $x_1 + 2x_2 \le 0.5$ $-x_1 + 3x_2 \le 0.5$ $x_1, x_2 \ge 0$

the Row 0 of the optimal tableau is

Row	Basic	z	x_1	x_2	s_1	s_2	RHS
0	z	1	0	0	0.4	1.4	??

What is the optimal z-value of the given LP?

Dual Solution:
$$y_{1} = .4$$
, $y_{2} = 1.4$
Dual doj. fun: $W = .5y_{1} + .5y_{2}$
Dual Optimum: Wopt = $.5(.4) + .5(1.4) = .2 + .7 = .9$
Pruseel Optimum: Zopt = $Wopt = [0.9]$

3.] Consider the following LP:

Maximize:
$$z = -2x_1 - x_2 + x_3$$

Subject to: $x_1 + x_2 + x_3 \le 3$
 $x_2 + x_3 \ge 2$
 $x_1 + x_3 = 1$
 $x_1, x_2, x_3 \ge 0$

The Row 0 of the optimal tableau is

Row	Basic	z	x_1	x_2	x_3	s_1	e_2	a_2	a_3	RHS	
0	z	1	4	0	0	0	1	(M-1)	(M+2)		tept
										\mathcal{O}	- /

What is the optimal solution to the dual LP? Verify that the optimal objective value function for the dual is the same as the primal.

Dual Optimizil Solution:
$$y_1 = 0$$

 $y_2 = -1$
 $y_3 = m+2-m = 2$

Dual Minimum:
$$W = 3y_1 + 2y_2 + y_3$$

 $W_{pt} = 3(0) + 2(-1) + 2 = 0 = 2_{opt}$