§6.5: Finding the Dual of an LP

1.] Find the dual of the following normal maximization LP:

$$
\begin{array}{rr}
\text { Maximize: } & z=2 x_{1}+x_{2} \\
\text { Subject to: } & -x_{1}+x_{2} \leq 1 \\
x_{1}+x_{2} \leq 3 \\
& x_{1}-2 x_{2} \leq 4 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

$$
\begin{aligned}
& \text { Dual LP: } \\
& \text { Min } \omega=y_{1}+3 y_{2}+4 y_{3} \\
& \text { Subject to } \\
& -y_{1}+y_{2}+y_{3} \geq 2 \\
& y_{1}+y_{2}-2 y_{3} \geq 1 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

2.] Find the dual of the following normal minimization LP:

$$
\begin{aligned}
& \text { Minimize: } \\
& z=x_{1}-x_{2} \\
& \text { Subject to: } \\
& 2 x_{1}+x_{2} \\
& \geq 4 \\
& x_{1}+x_{2} \geq 1 \\
& x_{1}+2 x_{2} \geq 3 \\
& x_{1}, x_{2}
\end{aligned} \geq 0
$$

Dual LP

Max $\omega=4 y_{1}+y_{2}+3 y_{3}$ Subject to

$$
\begin{aligned}
2 y_{1}+y_{2}+y_{3} & \leq 1 \\
y_{1}+y_{2}+2 y_{3} & \leq-1
\end{aligned}
$$

* Note, the dual LP is clearly infeasitiole (constranit 2 cannes be satisfied)
3.] Find the dual of the following non-normal minimization LP:

Minimize: $\quad z=4 x_{1}+x_{2}$
Subject to: $\quad 3 x_{1}+x_{2}=3$

$$
\begin{aligned}
4 x_{1}+3 x_{2} & \geq 6 \\
x_{1}+2 x_{2} & \leq 4 \\
x_{1} \text { irs, } x_{2} & \geq 0
\end{aligned}
$$

- Convert every constraint to an equality constrain f by defusing $x_{1}=x_{1}^{\prime}-x_{1}^{\prime \prime}$ for the uss variable are addling an excess variable x_{3} for constraint 2 and a slack verrailole x_{4} for constraint 3 .
Primal LP:
$\min z=4 x_{1}^{\prime}-4 x_{1}{ }^{\prime \prime}+x_{2}+0 x_{3}+0 x_{4}$
Subject to

$$
\begin{aligned}
3 x_{1}^{\prime}-3 x_{1}^{\prime \prime}+x_{2} & =3 \\
4 x_{1}^{\prime}-4 x_{1}^{\prime \prime}+3 x_{2}-x_{3} & =6 \\
x_{1}^{\prime}-4 x_{1}^{\prime \prime}+2 x_{2}+x_{4} & =4 \\
x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{2}, x_{3}, x_{4} & \geq 0
\end{aligned}
$$

Note: these two constrains collapse into a single equality constrain

$$
\begin{array}{r}
\left\{\begin{aligned}
3 y_{1}+4 y_{2}+y_{3} \leq 4 \\
-3 y_{1}-4 y_{2}-y_{3} \leq-4
\end{aligned}\right. \\
\Rightarrow\left\{\begin{array}{l}
3 y_{1}+4 y_{2}+y_{3} \leq 4 \\
3 y_{1}+4 y_{2}+y_{3} \leq 4
\end{array}\right.
\end{array}
$$

$$
\Rightarrow 3 y_{1}+4 y_{2}+y_{3}=4
$$

- Now, since the Priviest LP is a min problem, we set up the max dual LP with " \leq " constranits
$\frac{\text { Dual LP: }}{\operatorname{Max} \omega=3 y_{1}+6 y_{2}+4 y_{3}}$
Subject to

Dual LP:

$$
\overline{\max \omega}=3 y_{1}+6 y_{2}+4 y_{3}
$$

Subject to

$$
\begin{array}{r}
3 y_{1}+4 y_{2}+y_{3}=4 \\
y_{1}+3 y_{2}+2 y_{3} \leq 1 \\
y_{\text {, uss, }, y_{2} \geq 0, y_{3}} \leq 0
\end{array}
$$

Note: the sign constant on y_{1} is ers because there are no inequalities says otherwise.

