$\S 6.5$ (PART 2): Finding the Dual of an LP

1.] Find the dual of the following normal maximization LP:

$$
\begin{array}{lr}
\text { Maximize: } & z=2 x_{1}+x_{2} \\
& \\
\text { Subject to: } & -x_{1}+x_{2} \leq 1 \\
& x_{1}+x_{2} \leq 3 \\
& x_{1}-2 x_{2} \leq 4 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

2.] Find the dual of the following normal minimization LP:

$$
\begin{aligned}
\text { Minimize: } & z=x_{1}-x_{2} \\
& \\
\text { Subject to: } & 2 x_{1}+x_{2} \geq 4 \\
x_{1}+x_{2} & \geq 1 \\
x_{1}+2 x_{2} & \geq 3 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

3.] Find the dual of the following non-normal minimization LP:

$$
\begin{aligned}
& \text { Minimize: } z=4 x_{1}+x_{2} \\
& \text { Subject to: } 3 x_{1}+x_{2}=3 \\
& 4 x_{1}+3 x_{2} \geq 6 \\
& x_{1}+2 x_{2} \leq 4 \\
& x_{1} \text { urs, } x_{2} \geq 0
\end{aligned}
$$

