§6.10: Complementary Slackness
1.] Consider the following LP:

Maximize: $\quad z=5 x_{1}+3 x_{2}+x_{3}$

Subject to: $2 x_{1}+x_{2}+x_{3} \leq 6$

$$
\begin{aligned}
x_{1}+2 x_{2}+x_{3} & \leq 7 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Graphically solve the dual of this LP. Then use complementary slackness to solve the max primal problem.
Dual LP:
Minimize $\omega=6 y_{1}+7 y_{2}$

$$
\text { Subject to } \quad 2 y_{1}+y_{2} \geq 5
$$

$$
\begin{aligned}
& \Rightarrow \quad y=-\frac{6}{7} x+\frac{\omega}{7} \\
& \Rightarrow \quad y \geq 5-2 x \quad(1) \\
& \Rightarrow \quad y \geq \frac{3}{2}-\frac{1}{2} x(2) \\
& \Rightarrow \quad y=1-x \quad(3)
\end{aligned}\left\{\begin{array}{l}
\text { Optrial Solution: } \\
y_{c}=7 / 3 \quad y_{2}=1 / 3 \\
\omega_{0 p t}=4 \frac{4}{3}
\end{array}\right.
$$

Dual (1) ad (2) are bonding, Dual (3) is redundant.

$$
e_{1}=0, e_{2}=0, e_{3}>0
$$

Compternentary slachesss

$$
\begin{aligned}
& e_{1}=0 \Rightarrow x_{1}>0 \quad \begin{array}{l}
y_{1}>0 \Rightarrow s_{1}=0 \\
e_{2}=0 \Rightarrow x_{2}>0 \\
e_{3}>0 \Rightarrow x_{3}=0
\end{array} \quad \begin{array}{l}
y_{2}>0 \Rightarrow s_{2}=0 \\
\text { (Primal }(1) \&(2) \text { binding }
\end{array} \\
& \left\{\begin{array} { l }
{ 2 x _ { 1 } + x _ { 2 } = 6 } \\
{ x _ { 1 } + 2 x _ { 2 } = 7 }
\end{array} \Rightarrow \left\{\begin{array}{l}
2 x_{1}+x_{2}=6 \\
2 x_{1}+4 x_{2}=14
\end{array}\right.\right. \\
& \Rightarrow\left\{\begin{array} { l }
{ 2 x _ { 1 } + x _ { 2 } = 6 } \\
{ - 3 x _ { 2 } = - 8 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{1}=5 / 3 \\
x_{2}=8 / 3
\end{array}\right.\right. \\
& \left\lvert\, \begin{array}{l}
\text { Primal sol: } \begin{array}{l}
x_{1}=5 / 3, x_{2}=8 / 3 \\
\text { opt }=49 / 3
\end{array}
\end{array}\right.
\end{aligned}
$$

