§4.2: Mean Value Theorem
1.] Verify that $f(x)=x^{3}-x^{2}-6 x+2$ satisfies the hypothesis of Rolle's theorem for the interval $[0,3]$ and then find all c that satisfy the conclusion.
Hypothesis:
1.) f is continuous on $[0,3]$ because d. it is a polynomial.
2) $f^{\prime}(x)=3 x^{2}-2 x-6$. Suse f^{\prime} is a polynomial it is contusions ©(on $(0,3)$ ie. f is differentiable.

Conclusion: There exists a $c \in(0,3)$ such that

$$
\begin{aligned}
f(0) & =0^{3}-0^{2}-6(0)+2=2 \\
f(3) & =3^{3}-3^{2}-6(3)+2 \\
& =27-9-18+2=2
\end{aligned}
$$

$$
\begin{gathered}
f^{\prime}(c)=0 \\
\Rightarrow \quad 3 c^{2}-2 c-6=0 \\
\Rightarrow C=\frac{-(-2)}{2(3)} \pm \frac{\frac{\sqrt{(-2)^{2}-4(3)(-6)}}{2(3)}}{\Rightarrow} \quad c=\frac{1}{3} \pm \frac{\sqrt{4+72}}{6} \\
\Rightarrow \\
\Rightarrow \\
C=\frac{1}{3} \pm \frac{\sqrt{76}}{6}
\end{gathered}
$$

2.] Let $f(x)=\frac{3}{(x-1)^{2}}$. Show that $f(0)=f(2)$ but that there is no value $c \in(0,2)$ such that $f^{\prime}(c)=0$. Why does this not contradict Rolle's theorem?
Hyothsi:
1.) $f(x)=\frac{3}{(x-1)^{2}}$ has a vestrós !
asymptote at $x=1$. Not canticiones $\$$ on $[0,2]$
2.) $f(x)=\frac{3}{(x-1)^{2}}$ is nut differentratale on $(0,2)$ susie $f(1)=0 N 2$
3.) $f(0)=\frac{3}{(8-1)^{2}}=\frac{3}{(-1)^{2}}=3$ $f(2)=\frac{3}{(2-1)^{2}}=\frac{3}{(1)^{2}}=32$ same

Conclusion: Sure e $f(x)=\frac{3}{(x-1)^{2}}$ does not satisfy all three conditions is the hypothesis, we cannot conclude that Here exists a c inside $(0,2)$ suck that $f^{\prime}(c)=0$. This is nut a contradiction fo the theorem, we simply cannot apply the theorem.
3.] Verify that $f(x)=x^{3}-3 x+2$ satisfies the hypotheses of the Mean Value Theorem on $[-2,2]$ and then find all c that satisfy the conclusion.
Hypothesis:
1.) $f(x)=x^{3}-3 x+2$ is a polynomin) and so f is contrinious on $[-2,2]$.

$$
\begin{aligned}
& \text { Mean Value Theorem on }[-2,2] \text { and then } \\
& \Rightarrow 3 c^{2}-3=\frac{\left[(2)^{3}-3(2)+2\right]-\left[(-2)^{3}-3(2)+2\right]}{4}
\end{aligned}
$$

$$
\Rightarrow 3\left(c^{2}-1\right)=\frac{(8-6+2)-(-8+6+2)}{4}
$$

2.) $f^{\prime}(x)=3 x^{2}-3$ is also a polynomial and so

$$
\begin{aligned}
& \Rightarrow 3\left(c^{2}-1\right)=(8-6+2) . \\
& \Rightarrow 3\left(c^{2}-1\right)=\frac{4}{4}
\end{aligned}
$$ $f($ is continuous on $(-2,2)$, which means f is differentiatole on $(-2,2)$.

$$
\Rightarrow \quad 3\left(c^{2}-1\right)=1
$$

Conclusion: There exists a c inside $(-2,2)$ such that

$$
\Rightarrow \quad c^{2}-1=\frac{1}{3}
$$

$$
\begin{aligned}
f^{\prime}(c) & =\frac{f(b)-f(a)}{b-a} \\
\Rightarrow \quad 3 c^{2}-3 & =\frac{f(2)-f(-2)}{2-(-2)}
\end{aligned}
$$

$$
\Rightarrow \quad c^{2}=\frac{4}{3}
$$

$$
\Rightarrow \quad C= \pm \frac{\sqrt{4}}{\sqrt{3}}
$$

$$
\Rightarrow \quad \sqrt{C_{1}=\frac{2}{\sqrt{3}}, C_{2}=\frac{2}{\sqrt{3}}}
$$

4.] Determine if the function $f(x)=\frac{x+1}{2 x-5}$ satisfies the hypothesis of the Mean Value Theorem on the interval $[-1,2]$. If it does, find all values of c that satisfy the conclusion of the theorem.

Hypothesis:
1.) $f(x)$ is a rational function with domain $\left(-\infty, \frac{5}{2}\right) \cup\left(\frac{5}{2}, \infty\right)$. Since $f(x)$ is define on α $[-1,2]$, the function is contrionous.
2.) $f^{\prime}(x)=\frac{(2 x-5)(1)-(x+1)(2)}{(2 x-5)^{2}}=\frac{2 x-5-2 x-2}{(2 x-5)^{2}}=\frac{-7}{(2 x-5)^{2}}$
$f^{\prime}(x)$ is a rational function worth douai $\left(-\infty, \frac{5}{2}\right) \cup\left(\frac{5}{2}, \infty\right)$. Since $f(x)$ is defied on $(-1,2)$, the denvertive is contuinous, ie. $f(x)$ is differentiable on $(-1,2)$.

Conclusion, There exists a value c institute $(-1,2)$ such

$$
\begin{aligned}
& \text { Hat } \\
& \qquad \frac{f^{\prime}(c)=}{}=\frac{f(b)-f(a)}{b-a} \\
& (2 c-5)^{2}
\end{aligned}=\frac{f(2)-f(-1)}{2-(-1)}=1 \quad f(-1)=\frac{-1+1}{((-1)-5}=0
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{-7}{(2 c-5)^{2}}=\frac{-3-0}{3} \\
& \Rightarrow \quad \frac{-7}{(2 c-5)^{2}}=-1 \\
& \Rightarrow \quad-7=-(2 c-5)^{2} \\
& \Rightarrow \quad(2 c-5)^{2}=7 \\
& \Rightarrow \quad 2 c-5= \pm \sqrt{7} \\
& \Rightarrow \quad 2 c=5 \pm \sqrt{7} \\
& \Rightarrow \quad c=\frac{5}{2} \pm \frac{\sqrt{7}}{2} \\
& \Rightarrow \quad C_{1}=\frac{5}{2}-\frac{\sqrt{7}}{2}, c_{2}=\frac{5}{2}+\frac{\sqrt{7}}{2}
\end{aligned}
$$

5.] Law enforcement has been known to issue speeding tickets to drivers who pass between successive EZ pass booths in too short of a time interval. Assume EZ pass booths A and B are 100 miles apart. Use the mean value theorem to demonstrate that a driver who passes booth A at 1 PM and booth B at 2 PM was necessarily speeding at some time between the two booths. What assumptions are you making about the driver's position function?

- Essentially, the diver travelled 100 mites in ore hour. Thus, the average velaity between EZ Pass booths is 100 miles/ hr. By the MVT, at some point between the booths, the drier must have been travelling at an instaneous velaity of 10 mites y and so he/ste was absolutely speeding.
- Were assuming the dower is in a cars (uct a teleportation davies) ard so were assuming the car is contuonoub, ie. not traveling a positive distance in 0 secs.

