§4.2: MEAN VALUE THEOREM

1.] Verify that $f(x) = x^3 - x^2 - 6x + 2$ satisfies the hypothesis of Rolle's theorem for the interval [0,3] and then find all c that satisfy the conclusion.

Hyperbeix:
Landward: There exists a
$$c \neq (0.3)$$
 such that
i) f is continuous on [0.3] because of
i is continuous on [0.3] because of
i is continuous of [0.3] because of
i is continuous of
a polynomial. If is continuous of
on (0.3) we f is differentiable.
3) f(b) = $2^{-3}c^{-2}c^{-1}(b)+2$ = 2
 $f(s) = 3^{-2}c^{-1}(b)+2$ = 3
 $f(s) = 3^{-2$

3.] Verify that $f(x) = x^3 - 3x + 2$ satisfies the hypotheses of the Mean Value Theorem on [-2, 2] and then find all c that satisfy the conclusion.

4.] Determine if the function $f(x) = \frac{x+1}{2x-5}$ satisfies the hypothesis of the Mean Value Theorem on the interval [-1, 2]. If it does, find all values of c that satisfy the conclusion of the theorem.

Hypothesic:
1) f(x) is a verticial function with dayain

$$(-\alpha, \overline{z}) V(\overline{z}, \alpha)$$
. Since f(x) is defined on (x)
 $[-1, z]$, the function is continuous.
2) f(x) = $(2x - 5)^{1/2} = \frac{-7}{(2x - 5)^{2}} = \frac{-3}{3}$
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}) V(\overline{z}, \alpha)$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}) V(\overline{z}) V(\overline{z})$. Since f(x) is defined on (x)
 $(-\alpha, \overline{z}) V(\overline{z}) V(\overline{z}) V(\overline{z})$. Since f(x) i

- 5.] Law enforcement has been known to issue speeding tickets to drivers who pass between successive EZ pass booths in too short of a time interval. Assume EZ pass booths A and B are 100 miles apart. Use the mean value theorem to demonstrate that a driver who passes booth A at 1 PM and booth B at 2 PM was necessarily speeding at some time between the two booths. What assumptions are you making about the driver's position function?
 - Essentially, the diver travelled 100 miles in one hour. Thus, the average velocity between EZ Pass booths is 100 ^{miles}/hr. By the MVT, at some point between the booths, the driver must have been travelling at an instaneous velocity of 10 ^{miles}/hr and so he/she was absolutely speeding.
- · We're assumining the driver is in a car (46t a teleportation dervice) and so we're assuming the car is continuously the not traveling a positive distance in O secs.