§3.5: ImPLICIT Differentiation
1.] Verify that the point $(3,2)$ lies on the curve defined by the relation

$$
x^{2}+x y-y^{3}=7
$$

Find the equation of the tangent line to the curve at the point $(3,2)$.
Verify: $3^{2}+(3)(2)-2^{3}=9+6-8=9-2=7$ -
Point: $\left(x_{1}, y_{1}\right)=(3,2)$
Slope: $\begin{aligned} \left.m=\frac{d y}{d x}(\operatorname{lyy}) \right\rvert\,(2,2) & =-\frac{7}{9} \\ \frac{d}{d x}\left(x^{2}+x y-y^{3}\right) & =\frac{d}{d x}(7)\end{aligned}$

$$
\begin{aligned}
& \Rightarrow \quad x \frac{d y}{d x}-3 y^{2} \frac{d y}{d x}=-2 x-y \\
& \Rightarrow\left(x-3 y^{2}\right) \frac{d y}{d x}=-2 x-y \\
& \Rightarrow \quad \frac{d y}{d x}=\frac{-2 x-y}{x-3 y^{2}} \\
& \left.\Rightarrow \quad \frac{d y}{d x}\right|_{(3,2)}=\frac{-2(3)-2}{3-3(2)^{2}}=\frac{-8}{3-12}=\frac{8}{9} \\
& \qquad \begin{array}{ll}
\text { Line: } y-y_{1}=m\left(x-x_{1}\right) \\
\Rightarrow y-2=\frac{8}{9}(x-3) \quad y y=\frac{8}{9} x-\frac{8}{3}+\frac{6}{3} \\
\Rightarrow y-2=\frac{8}{9} x-\frac{8}{3} \quad y=\frac{8}{9} x-\frac{2}{3}
\end{array}
\end{aligned}
$$

2.] Find $\frac{d y}{d x}$ for the curve defined by the following relation:

$$
\begin{aligned}
& \frac{d}{d x}(\sin (x y))=\frac{d}{d x}\left(x^{2}+y\right) \\
\Rightarrow & \cos (x y) \cdot \frac{d}{d x}(x y)=2 x+\frac{d y}{d x} \\
\Rightarrow & \cos (x y) \cdot\left(\frac{d}{d x}(x) \cdot y+x \frac{d}{d x}(y)\right)=2 x+\frac{d y}{d x} \\
\Rightarrow & \cos (x y) \cdot\left(y+x \frac{d y}{d x}\right)=2 x+\frac{d y}{d x} \\
\Rightarrow & y \cos (x y)+x \cos (x y) \cdot \frac{d y}{d x}=2 x+\frac{d y}{d x} \\
\Rightarrow & x \cos (x y) \frac{d y}{d x}-\frac{d y}{d x}=2 x-y \cos (x y)
\end{aligned}
$$

$$
\Rightarrow \frac{\frac{d y}{d x}(x \cos (x y)-1)=2 y-y \cos (x y)}{\Rightarrow \int \frac{d y}{d x}=\frac{2 y-y \cos (x y)}{x \cos (x y)-1}}
$$

3.] Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for the ellipse defined by the following relation:

$$
2 x^{2}+y^{2}=4
$$

First Denwáhio:
Second Dervatue:

$$
\begin{array}{rlrl}
& & \frac{d}{d x}\left(2 x^{2}\right)+\frac{d}{d x}\left(y^{2}\right)=\frac{d}{d x}(4) \\
& \Rightarrow & 4 x+2 y \frac{d y}{d x}=0 \\
\Rightarrow & \quad 2 y \frac{d y}{d x}=-4 x \\
& \Rightarrow & \quad \frac{d y}{d x}=-\frac{4 x}{2 y}
\end{array}
$$

$$
\Rightarrow \quad \frac{d y}{d x}=-\frac{2 x}{y} \quad \Rightarrow
$$

$$
\Rightarrow \quad \frac{d^{2} y}{d x^{2}}=\frac{1}{y^{2}}\left[-2 y-\frac{4 x^{2}}{y}\right]
$$

$$
\Rightarrow \quad \frac{d^{2} y}{d x^{2}}=\frac{1}{y^{2}}\left[\frac{-2 y^{2}-4 x^{2}}{y}\right]
$$

Note: from the

$$
\Rightarrow \quad \frac{d^{2} y}{d x^{2}}=\frac{-\left(2 y^{2}+4 x^{2}\right)}{y^{3}}
$$ or ỉंज्या equation $4 x^{2}+2 y^{2}=4$!

$$
\Rightarrow \sqrt{\frac{d^{2} y}{d x^{2}}=-\frac{4}{y^{3}}}
$$

