§3.1: Differential Notation
1.] Let $f(x)=x^{2}-x$. Assuming $y=f(x)$, use both the prime notation and the differential notations to evaluate $f^{\prime}(x)$. Use the derivative to find $f^{\prime}(2)$ and express your answer in both notations.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}-(x+h)\right]-\left[x^{2}-x\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x-h-x^{2}+x}{h} \\
& =\lim _{\lim _{\rightarrow 0}} \frac{2 x h+h^{2}-h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h-1)}{h}=2 x+0-1=2 x-1
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Newton } \\
\begin{array}{ll}
f(x)=x^{2}-x \\
f^{\prime}(x)=2 x-1 \\
f^{\prime}(2)=3
\end{array} & \begin{array}{l}
\text { Leibniz } \\
\frac{d y}{d x}=2 x-1 \\
\left.\frac{d y}{d x}\right|_{x=2}=3
\end{array}
\end{array}
$$

2.] A tennis ball is hit vertically upward so that its position function is given by $s(t)=-16 t^{2}+96 t+4$ feet above the ground at t seconds. Find the velocity and acceleration functions. What are the initial position and velocity values?
Note: Velaity, $v(t)$, is the fist denature of position ie. $v(t)=s^{\prime}(t)$
Acceleration, $a(t)$, is the first demotic if velvety is. $a(t)=v^{\prime}(t)$. So that $a(t)=s^{\prime \prime}(t)$.

$$
\begin{aligned}
\text { Let } s(t) & =-16 t^{2}+96 t+4 \text {, then } \\
V(t)=s^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[-16(t+h)^{2}+96(t+h)+4\right]-\left[-16 t^{2}+96 t+4\right]}{h} \\
& \left.=\lim _{h \rightarrow 0} \frac{-16 t^{2}-32 t h-16 h^{2}+96 t+96 h+1 h^{\prime}+16 t^{2}-96 t-2 h}{h}\right] \\
& =\lim _{h \rightarrow 0} \frac{-32 t h-16 h^{2}+96 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(-32 t-16 h+96)}{h} \\
& =-32 t-16(s)+96 \\
v(t) & =-32 t+96
\end{aligned}
$$

$$
\begin{aligned}
a(t)=v^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{v(t+h)-v(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{[-32(t+h)+96]-[-32 t+96]}{h} \\
& =\lim _{h \rightarrow 0}-32 t-32 h+96+32 t-96 \\
& =\lim _{h \rightarrow 0} \frac{-32 h}{h} \\
a(t) & =-32
\end{aligned}
$$

Position: $s(t)=-16 t^{2}+96 t+4 \mathrm{ft}$
velaity: $V(t)=-32 t+96 \mathrm{ft} / \mathrm{sec}$
Acceterntwi: $a(t)=-32 \mathrm{ft} / \mathrm{sec}^{2} \quad \leftarrow$ (gravity)
Duitrial Ats: $s(0)=-16(0)^{2}+96(0)+4$

$$
\Rightarrow s(0)=4 \mathrm{ft}
$$

Puition= Vel: $V(0)=-32(0)+96$

$$
\Rightarrow v(0)=96 \mathrm{ft} / \mathrm{sec}
$$

3.] Consider the piecewise function $f(x)$ given below. Notice from the graph that $f(x)$ is continuous at $x=1$. Show that $f(x)$ is not differentiable $x=1$ and sketch $f^{\prime}(x)$ on the graph below.

Cunturicity:

$$
\begin{aligned}
& f(1)=1^{2}=1 \\
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x^{2}=1^{2}=1 \\
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}-x+2=-1+2=1
\end{aligned}
$$

- f is continuous at $x=1$.

$$
\begin{aligned}
f_{-}^{\prime}(1) & =\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1} \\
& =\lim _{x \rightarrow 1^{-}} \frac{x^{2}-1}{x-1} \\
& =\lim _{x \rightarrow 1^{-}} \frac{(x+1)(x-1)}{x-1} \\
& =\lim _{x \rightarrow 1^{-}} x+1 \\
& =1+1 \\
& =2
\end{aligned}
$$

$$
\begin{aligned}
f_{t}^{\prime}(1) & =\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1} \\
& =\lim _{x \rightarrow 1^{+}} \frac{(-x+2)-1}{x-1} \\
& =\lim _{x \rightarrow 1^{+}}-\frac{x+1}{x-1} \\
& =\lim _{x \rightarrow 1^{+}}-\frac{(x-1)}{x-1} \\
& =-1
\end{aligned}
$$

$=-1$

- Because the left and right side denvitures at $x=1$ are not equal, we say $f(x)$ is not differentrible at $x=1$

$$
f(x)= \begin{cases}x^{2} & \text { if } x \leq 1 \\ -x+2 & \text { if } x>1\end{cases}
$$

Differatrainility: side densituris.

$$
f^{\prime}(1)=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}
$$

Denwätuic Function
Must check the "right" are "left" for $x<1$: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+1)-f(x)}{h}$

Note: $f^{\prime}(1)$ doesn't exist

Note: A function is differentribible at c if its denotative fraction $f(x)$ is contubuous at ε.

