§2.5: Double-Angle Formulas and Product-to-Sum Formulas

1.] Use a double-angle formula to evaluate $\sin \left(\frac{\pi}{3}\right)$ exactly.
2.] Suppose $\sin (\theta)=\frac{3}{5}$ and θ is in the first quadrant. Find $\sin (2 \theta), \cos (2 \theta)$ and $\tan (2 \theta)$.
3.] Find the general solution to the equation: $2 \cos (x)+\sin (2 x)=0$
4.] Verify the following identity: $(\sin (x)+\cos (x))^{2}=1+\sin (2 x)$.
5.] Write the expression $\cos ^{4}(x)$ in terms of first powers of cosine.
6.] Use a product-to-sum formula to write $\sin (5 \theta) \sin (3 \theta)$ as a sum or difference.

