§2.5 (PART 2): CONTINUITY

1.] Determine the interval on which the function $f(x)=\frac{1}{x^{2}-4}$ is continuous.
2.] Determine if this piecewise function is continuous on the entire real number line.

$$
f(x)= \begin{cases}\frac{2 x}{2-x} & \text { if } x<1 \\ x^{2}+3 x & \text { if } 1 \leq x \leq 3 \\ \frac{x^{2}-5 x+6}{3-x} & \text { if } x>3\end{cases}
$$

3.] Consider the two functions $f(x)$ and $g(x)$ whose graphs are given below:

a.) Let $h(x)=f(x)+g(x)$. Show, using appropriate limits, that $\lim _{x \rightarrow 1} h(x)$ exists and calculate its value.
b.) Is $h(x)$ continuous at $x=1$?
4.] Determine the removable discontinuities and redefine the function so that it is continuous at its removable discontinuities.

$$
f(x)=\frac{x^{2}-5 x}{x^{3}-3 x^{2}-10 x}
$$

5.] Use the Intermediate Value Theorem to show that the following equation has a solution on the given interval:

$$
2 x^{3}+x=2, \quad(-1,1)
$$

