$\S 2.5$ (PART 2): CONTINUITY
1.] Determine the interval on which the function $f(x)=\frac{1}{x^{2}-4}$ is continuous.

Rational functions are continuous on their domains so it is contininans on $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$
2.] Determine if this piecewise function is continuous on the entire real number line.

$$
f(x)=\left\{\begin{array}{lll}
\frac{2 x}{2-x} & \text { if } x<1 \\
x^{2}+3 x & \text { if } 1 \leq x \leq 3 \\
\frac{x^{2}-5 x+6}{3-x} & \text { if } x>3 & \text { Confinuars on } \\
& (-\infty, 1) \cup(1,3) \cup(3, \infty)
\end{array}\right.
$$

Check Continuity at $x>1$:
1.) $f(1)=1^{2}+3(1)=4$
2.) $\lim _{x \rightarrow 1^{-}} \frac{2 x}{2-x}=\frac{2(1)}{2-1}=\frac{2}{1}=2$
$\lim _{x \rightarrow 1^{+}} x^{2}+3 x=1^{2}+3(1)=4$
\Rightarrow Not Continuous at $x=1$, but it is right-continuous.

Check Contivivity at $x>3$:
1.) $f(3)=3^{2}+3(3)=9+9=18 \mathrm{C}$
2.) $\lim _{x \rightarrow 1^{-}} x^{2}+3 x=3^{2}+3(3)=18$
$\lim _{x \rightarrow 1^{+}} \frac{x^{2}-5 x+6}{3-x}=\lim _{x \rightarrow 3^{+}} \frac{(x-3)(x-2)}{-(x-3)}=\lim _{x \rightarrow 3^{+}} \frac{x-2}{-1}=\frac{3-2}{-1}=-1$
\Rightarrow Not Continuous at $x=3$ but it is left-continicions.
3.] Consider the two functions $f(x)$ and $g(x)$ whose graphs are given below:

a.) Let $h(x)=f(x)+g(x)$. Show, using appropriate limits, that $\lim _{x \rightarrow 1} h(x)$ exists and calculate its value.

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} h(x)=\lim _{x \rightarrow 1^{-}} f(x)+g(x)=\lim _{x \rightarrow 1^{-}} f(x)+\lim _{x \rightarrow 1^{-}} g(x)=-3+2=-1 \\
& \lim _{x \rightarrow 1^{+}} h(x)=\lim _{x \rightarrow 1^{+}} f(x)+g(x)=\lim _{x \rightarrow 1^{+}} f(x)+\lim _{x \rightarrow 1^{+}} g(x)=0+(-1)=-1
\end{aligned}
$$

b.) Is $h(x)$ continuous at $x=1$?

$$
h(1)=f(1)+g(1)=0+2=2
$$

Since $\lim _{x \rightarrow 1} h(x)=-1 \neq 2=h(1)$, it follows that $h(x)$ is not continuous at $x=1$.
4.] Determine the removable discontinuities and redefine the function so that it is continuous at its removable discontinuities.

$$
f(x)=\frac{x^{2}-5 x}{x^{3}-3 x^{2}-10 x}
$$

Factor: $f(x)=\frac{x(x-5)}{x\left(x^{2}-3 x-10\right)}=\frac{x(x-5)}{x(x-5)(x+2)}$
role: $f(-2)=f(0)=f(5)=\frac{0}{0}=$ ONE
Domain : $(-\infty,-2) \cup(-2,0) \cup(0,5) \cup(5, \infty)$

- $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{x(x-5)}{x(x-5)(x+2)}=\lim _{x \rightarrow 0} \frac{1}{x+2}=\frac{1}{2} \rightarrow$ Hole at (0, $\frac{1}{2}$) Remoradel ins
- $\lim _{x} f(x)=\lim _{x} \frac{x(x-5)}{x(x-5)}=\lim ^{2} \frac{1}{x 2}=\frac{1}{7} \rightarrow$ Hols at $\left(5, \frac{1}{7}\right)$ Removable Discontinuity
- $\lim _{x \rightarrow-2} f(x)=\lim _{x \rightarrow-2} \frac{x(x-5)}{x(x-5)(x+2)}=\lim _{x \rightarrow-2} \frac{1}{x+2}\left\{\begin{array}{l}\lim _{x \rightarrow-2} \frac{1}{x+2}=-\infty \\ \lim _{x \rightarrow-2} \frac{1}{x+2}=\infty\end{array} \longrightarrow\right.$ Vertrial Ax.mpidte

Define $f(0)=\frac{1}{2}$ and $f(5)=\frac{1}{7}$ bs "fix" the removable discontinuitris.
5.] Use the Intermediate Value Theorem to show that the following equation has a solution on the given interval:

$$
\underbrace{2 x^{3}+x}_{f(x)}=2
$$

Let $f(x)=2 x^{3}+x$. This function is continuous on $[-1,1]$ because it is a polynomial. Consider the following:

$$
\begin{aligned}
& \text { - } f(-1)=2(-1)^{3}+(-1)=-3 \\
& \text { - } f(1)=2(1)^{3}+(1)=3
\end{aligned}
$$

By the IVT, we know Hat $f(x)$ takes on all valves between -3 and 3 over the interval $(-1,1)$. Since 2 is between -3 and 3 , we haar this equation has a solution on $(-1,1)$.

