§2.3 (part 2): Solving Trigonometric Equations
1.] Suppose x is any angle inside $[0,2 \pi)$. Solve the following equation for $x: 2 \sin ^{2}(x)-\sin (x)-1=0$

$$
\begin{aligned}
& 2 \sin ^{2}(x)-\sin (x)-1=0 \\
\Rightarrow & (2 \sin (x)+1)(\sin (x)-1)=0 \\
\Rightarrow & 2 \sin (x)+1=0 \quad \sin (x)-1=0 \\
\Rightarrow & 2 \sin (x)=-1 \quad \sin (x)=1
\end{aligned} \quad \Rightarrow \quad x=\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}
$$

2.] Suppose x is any angle inside $[0,2 \pi)$. Solve the following equation for $x: 2 \sin ^{2}(x)+3 \cos (x)=3$

Beware of 3.] Find the general solution to the equation: $\sin (x)+1=\cos (x)$

$$
\begin{array}{ll}
& (\sin (x)+1)^{2}=(\cos (x))^{2} \\
\Rightarrow & \sin ^{2}(x)+2 \sin (x)+1=\cos ^{2}(x) \\
\Rightarrow & \sin ^{2}(x)+2 \sin (x)+1=1-\sin ^{2}(x) \\
\Rightarrow & 2 \sin ^{2}(x)+2 \sin (x)=0
\end{array}
$$

$$
\begin{cases}2 \sin (x)(\sin (x)+1)=0 \\ 2 \sin (x)=0 & \sin (x)+1=0 \\ \sin (x)=0 & \sin (x)=-1 \\ x=0, \pi & x=3 \pi / 2\end{cases}
$$

$$
\begin{aligned}
& \text { Extraneous solution } \\
& \text { (dacia satisfy original eqn) }
\end{aligned}
$$

$$
\Rightarrow X=0+2 n \pi, \frac{3 \pi}{2}+2 n \pi
$$

$$
\begin{aligned}
& \begin{array}{ll}
& 2 \sin ^{2}(x)+3 \cos (x)=3 \\
\Rightarrow & 2\left(1-\cos ^{2}(x)\right)+3 \cos (x)=3 \\
\Rightarrow & 2-2 \cos ^{2}(x)+3 \cos (x)=3 \\
\Rightarrow & 2 \cos ^{2}(x)-3 \cos (x)+1=0
\end{array} \quad \Rightarrow \begin{array}{ll}
(2 \cos (x)-1)(\cos (x)-1)=0 \\
2 \cos (x)-1=0 & \cos (x)-1=0 \\
\cos (x)=\frac{1}{2} & \cos (x)=1 \\
x=\frac{\pi}{3}, \frac{5 \pi}{3} & x=0
\end{array} \\
& \Rightarrow x=0, \frac{\pi}{3}, \frac{5 \pi}{3}
\end{aligned}
$$

4.] Find the general solution to the equation: $2 \cos (3 x)-1=0$

$$
\begin{array}{ll}
& 2 \cos (3 x)-1=0 \\
\Rightarrow & 2 \cos (3 x)=1 \\
\Rightarrow & \cos (3 x)=\frac{1}{2} \\
\Rightarrow & 3 x=\frac{\pi}{3}, \frac{5 \pi}{3}
\end{array} \quad \begin{array}{ll}
3 x=\frac{\pi}{3}+2 n \pi & 3 x=\frac{5 \pi}{3}+2 n \pi \\
& x=\frac{\pi}{9}+\frac{2}{3} n \pi
\end{array} \quad x=\frac{5 \pi}{9}+\frac{2}{3} n \pi
$$

5.] Find the general solution to the equation: $2 \tan \left(\frac{x}{2}\right)-2=0$

$$
\begin{array}{ll}
& 2 \tan \left(\frac{x}{2}\right)-2=0 \\
\Rightarrow & 2 \tan \left(\frac{x}{2}\right)=2 \\
\Rightarrow & \tan \left(\frac{x}{2}\right)=1 \\
\Rightarrow & \frac{x}{2}=\frac{\pi}{4}, \frac{5 \pi}{4}
\end{array} \quad \Rightarrow \frac{x}{2}=\frac{\pi}{4}+2 n \pi,
$$

6.] Find all solutions in the interval $[0,2 \pi): \sin ^{2}(x)-3 \sin (x)-2=0$

Doesi't factor nicely!

$$
\begin{aligned}
& \rightarrow \sin ^{2}(x)-3 \sin (x)-2=0 \quad \int x=\arcsin \left(\frac{3+\sqrt{\pi}}{2}\right), x=\arcsin \left(\frac{3-\sqrt{1}}{2}\right) \\
& \begin{array}{l}
\Rightarrow \quad \sin (x)=\frac{-(-3)}{2} \pm \frac{-\sqrt{(-3)^{2}-4}}{2} \\
\Rightarrow \quad \sin (x)=\frac{3}{2} \pm \frac{\sqrt{17}}{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \sin (x)=\frac{3+\sqrt{17}}{2} \quad \sin (x)=\frac{3-\sqrt{17}}{2} \\
& x=5.687,3.738
\end{aligned}
$$

