§2.3 (part 1): Solving Trigonometric Equations
1.] Suppose x is any angle inside $[0,2 \pi)$. Solve the following equation for $x: \sin (x)+\sqrt{2}=-\sin (x)$
$\sin (x)+\sqrt{2}=-\sin (x) \quad \int \sin (x)$ is regather in QIII and QII

$$
\begin{aligned}
& \Rightarrow \quad 2 \sin (x)+\sqrt{2}=0 \\
& \Rightarrow \quad 2 \sin (x)=-\sqrt{2} \\
& \Rightarrow \quad \sin (x)=-\frac{\sqrt{2}}{2}
\end{aligned}
$$

2.] Suppose x is any angle inside $[0,2 \pi)$. Solve the following equation for x : $\cot (x) \cos ^{2}(x)=2 \cot (x)$

$$
\begin{array}{ll}
& \cot (x) \cos ^{2}(x)=2 \cot (x) \\
\Rightarrow & \cot (x) \cos ^{2}(x)-2 \cot (x)=0 \\
\Rightarrow & \cot (x)\left(\cos ^{2}(x)-2\right)=0 \\
\Rightarrow & \cot (x)=0 \quad \cos ^{2}(x)-2=0
\end{array} \quad \begin{aligned}
& \cot (x)=0 \\
& x=\pi / 2,3 \pi / 2 \\
& \text { Because } \cot (x)= \pm \sqrt{2} \\
& x=n / A(\cos (x) \text { is is zero at } \\
& \text { never bigger than 1 } \\
& \text { or smart than }-1)
\end{aligned}
$$

$$
\Rightarrow \quad \cot (x)=0 \quad \cos ^{2}(x)-2=0
$$ these values.

3.] Suppose x is any angle. Solve the following equation for $x \cdot \sin ^{2}(x)=2 \sin (x)$

$$
\begin{array}{ll}
& \sin ^{2}(x)=2 \sin (x) \\
\Rightarrow & \sin ^{2}(x)-2 \sin (x)=0 \\
\Rightarrow & \sin (x)(\sin (x)-2)=0 \\
\Rightarrow & \sin (x)=0 \quad \sin (x)-2=0
\end{array} \quad\left\{\begin{array} { l l }
{ \operatorname { s i n } (x) = 0 } & { \operatorname { s i n } (x) = 2 } \\
{ x = 0 , \pi } & { x = n / 4 \quad (\operatorname { s i n } (x) } \\
{ \text { never } }
\end{array} \quad \left\{\begin{array}{l}
x=0+2 n \pi, \pi+2 n \pi \\
\end{array} \quad \begin{array}{l}
x=n \pi \text { for any integer } n
\end{array}\right.\right.
$$

$$
\begin{aligned}
& \text { 4.] Find the general solution to the equation: } 3 \sec ^{2}(x)-4=0 \\
& 3 \sec ^{2}(x)-4=0 \\
& \Rightarrow \quad 3 \sec ^{2}(x)=4 \\
& \Rightarrow \quad \sec ^{2}(x)=\frac{4}{3} \\
& X=\frac{\pi}{6}, \frac{11 \pi}{6} \\
& \sec (x)=-\frac{2}{\sqrt{3}} \\
& \sec (x)=\frac{2}{\sqrt{3}} \\
& \cos (x)=-\frac{\sqrt{3}}{2} \\
& \cos (x)=\frac{\sqrt{3}}{2} \\
& x=\frac{5 \pi}{6}, \frac{7 \pi}{6} \\
& \Rightarrow \quad \sec (x)= \pm \sqrt{\frac{4}{3}} \quad l, x=\frac{\pi}{6}+2 n \pi, \frac{5 \pi}{6}+2 n \pi, \frac{\pi \pi}{6}+2 n \pi, \frac{11 \pi}{6}+2 n \pi
\end{aligned}
$$

5.] Find all solutions in the interval $[0,2 \pi): \sin ^{2}(x)=3 \cos ^{2}(x)$

$$
\begin{array}{ll}
& \sin ^{2}(x)=3 \cos ^{2}(x) \\
\Rightarrow & 1-\cos ^{2}(x)=3 \cos ^{2}(x) \\
\Rightarrow & 1=4 \cos ^{2}(x) \\
\Rightarrow & 4 \cos ^{2}(x)=1 \\
\Rightarrow & \cos ^{2}(x)=\frac{1}{4}
\end{array} \quad\left\{\begin{array}{l}
\cos (x)= \pm \frac{1}{2} \\
\cos (x)=\frac{1}{2} \\
x=\pi / 3,5 \pi / 3 \\
\cos (x) \\
x= \\
x=\pi / 3,2 \pi / 3,4 \pi / 3,5 \pi / 3
\end{array}\right.
$$

6.] Find all solutions in the interval $[0,2 \pi): \tan ^{2}(x)=\sec (x)-1$

$$
\begin{array}{ll}
& \tan ^{2}(x)=\sec (x)-1 \\
\Rightarrow & \sec ^{2}(x)-1=\sec (x)-1 \\
\Rightarrow & \sec ^{2}(x)-\sec (x)=0 \\
\Rightarrow & \sec (x)(\sec (x)-1)=0 \\
\Rightarrow & \sec (x)=0 \quad \sec (x)-1=0
\end{array} \quad \begin{aligned}
& \sec (x)=0 \quad \sec (x)=1 \\
& x=n / A \\
& (\sec (x) \text { has no } \\
& x-\text { interrupts })
\end{aligned} \Rightarrow \cos (x)=1
$$

