§2.1: Rates of Change and Tangents

1.] Consider the following function below that describes the vertical distance travelled by a grenade launched vertically from the ground with a speed of $96 \mathrm{ft} / \mathrm{sec}$:

$$
f(x)=-16 x^{2}+96 x
$$

Here x is in seconds and $f(x)$ is in feet. Find the average velocity of the grenade between 1 and 3 seconds of it being in the air.
2.] Estimate the slope of the tangent line shown in the given graphs below:

3.] Consider the position function $y=16 x^{2}$, where y is the distance a piece of rock has fallen from a deep canyon, if we ignore air resistance. Here, y is measured in feet and x is measured in seconds. Estimate the instantaneous velocity of the rock after two seconds.

Time interval	$[2,2.5]$	$[2,2.1]$	$[2,2.01]$	$[2,2.001]$
Change in time (Δx)				
Change in distance (Δy)				
Average velocity $\left(\frac{\Delta y}{\Delta x}\right)$				

Time interval	$[1.5,2]$	$[1.9,2]$	$[1.99,2]$	$[1.999,2]$
Change in time (Δx)				
Change in distance (Δy)				
Average velocity $\left(\frac{\Delta y}{\Delta x}\right)$				

Make a conjecture about the value of the instantaneous velocity at $x=2$.

