## §2.1: RATES OF CHANGE AND TANGENTS

1.] Suppose a grenade is launched vertically upwards from the ground with a speed of 96 ft/s. Neglecting air resistance, a well-known formula from physics states that the position of the grenade after t seconds is given by the function

$$d(t) = -16t^2 + 96t$$

Find the average velocity of the grenade between 1 and 3 seconds of it being in the air.

2.] Estimate the slope of the tangent line shown in the given graphs below:



3.] Consider the position function  $d(t) = 16t^2$ , where d(t) is the distance a piece of rock has fallen from a 256-foot-deep canyon, if we ignore air resistance. Here, d is measured in feet and t is measured in seconds. Estimate the instantaneous velocity of the rock after two seconds.

|              |                           | Time interval                                                                                   | <b>a b</b> [2, 2.5]     | د له<br>[2, 2.1]       | [2, 2.01] | <b>a b</b><br>[2,2.001] |       |
|--------------|---------------------------|-------------------------------------------------------------------------------------------------|-------------------------|------------------------|-----------|-------------------------|-------|
| lun<br>St >0 | Lin <u>Ad</u><br>X Sut At | Change in time $(\Delta t)$                                                                     | .5                      | • 1                    | ,0(       | .001                    | -     |
|              |                           | Change in distance $(\Delta d)$                                                                 | 36                      | 6.56                   | .06416    | ,064016                 |       |
|              |                           | Average velocity $\left(\frac{\Delta d}{\Delta t}\right) d \left( \underbrace{b}_{b-a} \right)$ | 72                      | 65.6                   | bille     | 64.016                  | -> 64 |
|              |                           | I                                                                                               |                         |                        |           |                         | Г     |
|              | Shing Ad<br>At - 20 At    | Time interval                                                                                   | <b>ک</b> مر<br>[1.5, 2] | <b>b a</b><br>[1.9, 2] | [1.99, 2] | [1.999, 2]              |       |
|              |                           | Change in time $(\Delta t)$                                                                     | 5                       | -, 1                   | -,01      | -,001                   | -     |
|              |                           | $\begin{array}{c} \text{Change in distance} \\ (\Delta d) \end{array}$                          | ~28                     | -6.24                  | -, 6384   | ~ 063984                |       |
|              |                           | Average velocity $\left(\frac{\Delta d}{\Delta t}\right)$                                       | 56                      | 62.4                   | 63.84     | 63.984                  |       |

Make a conjecture about the value of the instantaneous velocity at t = 2.

From the brute force method above, we can conclude  

$$\lim_{d \to 0} \frac{dd}{dt} = \lim_{d \to 0} \frac{d(\omega) - d(\alpha)}{b - \alpha} = 64$$
 ft/sec