§2.1: Rates of Change and Tangents
1.] Suppose a grenade is launched vertically upwards from the ground with a speed of $96 \mathrm{ft} / \mathrm{s}$. Neglecting air resistance, a well-known formula from physics states that the position of the grenade after $t$ seconds is given by the function

$$
d(t)=-16 t^{2}+96 t
$$

Find the average velocity of the grenade between 1 and 3 seconds of it being in the air.

$$
\begin{aligned}
& \text { [Avg vele.ty] }=\frac{d(3)-d(1)}{3-1} \\
& =\frac{144-80}{2} \\
& =\frac{64}{2} \\
& =32 \mathrm{ft} / \mathrm{sec} \\
& d(3)=-16(3)^{2}+96(3) \\
& =3(-16(3)+96) \\
& =3(-48+96) \\
& =3(48) \\
& =144 \\
& d(1)=-16(1)^{2}+96(1) \\
& =-16+96 \\
& =80 \\
& \begin{array}{l}
\text { interval } t=1 \text { b } t=3 \text {, } \\
\text { the grenade is travelining, }
\end{array} \\
& \text { on average, } 32 \mathrm{ft} / \mathrm{sec} \text {. }
\end{aligned}
$$

2.] Estimate the slope of the tangent line shown in the given graphs below:


- Slope of the tangent lase bo $f(x)$ at the punt $(1,1)$ is $m=3$
- Instantaneous rate of change of $f(x)$ at $X=1$ is 3 .
- $f^{\prime}(1)=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=3$.

- Slope of the tangent live bo fax) at the point $(0,0)$ is $m=-2$
- Instantaneous rate of change of $f(x)$ at $x=0$ is -2 .
- $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=-2$
3.] Consider the position function $d(t)=16 t^{2}$, where $d(t)$ is the distance a piece of rock has fallen from a 256 -foot-deep canyon, if we ignore air resistance. Here, $d$ is measured in feet and $t$ is measured in seconds. Estimate the instantaneous velocity of the rock after two seconds.


Make a conjecture about the value of the instantaneous velocity at $t=2$.
from the borate force method above, we can conclude

$$
\lim _{\Delta t \rightarrow 0} \frac{\Delta d}{\Delta t}=\lim _{b \rightarrow a} \frac{d(b)-d(a)}{b-a}=64 \mathrm{ft} / \mathrm{sec}
$$

The rock, after falling for 2 seconds, is traveling at an instantareons velocity of $64 \mathrm{ft} / \mathrm{sec}$.

