§11.3: LP Formulation of Two-Person Zero-Sum Games
1.] Consider the following two-person zero-sum game. Min nate $=10$

Verify that the strategies $\left(x_{1}, x_{2}, x_{3}\right)=(1 / 6,0,5 / 6)$ for A and $\left(y_{1}, y_{2}, y_{3}\right)=(49 / 54,5 / 54,0)$ for B are optimal, and determine the value of the game.
$\frac{B^{\prime} \text { Strategy }}{B_{1}}$
A's Expectation

$$
5 x_{1}+x_{2}+10 x_{3}
$$

$$
=5\left(\frac{1}{6}\right)+10\left(\frac{5}{6}\right)=\frac{55}{6} .
$$

B_{2}
B_{3}

$$
\begin{aligned}
& 50 x_{1}+.1 x_{2}+10 x_{3} \\
& =50\left(\frac{1}{6}\right)+10\left(\frac{5}{6}\right)=\frac{100}{6}
\end{aligned}
$$

A^{\prime} Strategy B^{\prime} Expectation
$A_{1} \quad 5 y_{1}+50 y_{2}+50 y_{3}$

$$
=5\left(\frac{49}{54}\right)+50\left(\frac{5}{54}\right)=\frac{55}{6}
$$

A_{2}

$$
y_{1}+y_{2}+11 y_{3}
$$

A_{3}

$$
=\frac{49}{54}+\frac{5}{54}=1
$$

$$
=10\left(\frac{4 y}{54}\right)+\frac{5}{54}=\frac{55}{6}
$$

Value of the gave: $V=5 / 6$
2.] Colonel Blotto's army is fighting for the control of two strategic locations. Ditto has two regiments and the enemy has three. A location will fall to the army with more regiments. Otherwise, the result of the battle is a draw. Formulate the problem as a two-person zero-sum game, and solve it in Excel. Which army will win the battle?

Blate

	Enemy			
	B_{1}	B_{2}	B_{3}	B_{4}
	$(3,0)$	$(2,1)$	$(1,2)$	$(0,6)$
$A_{1}(2,0)$	-1	-1	0	0
$A_{2}(1,1)$	0	-1	-1	0
$A_{3}(0,2)$	0	0	-1	-1

Let $x_{i}=$ probabills that Blotto uses strategy Ai

Blotto s LP:
$\operatorname{Max} z=V$
ST.

$$
\begin{aligned}
& V \leq-x_{1}+o x_{2}+O x_{3} \\
& V \leq-x_{1}-x_{2}+\sigma x_{3} \\
& V \leq o x_{1}-x_{2}-x_{3} \\
& V \leq o x_{1}+O x_{2}-x_{3} \\
& x_{1}+x_{2}+x_{3}=1 \\
& \quad x_{i} \geq 0, v \text { uss. }
\end{aligned}
$$

Excel solutru:

$$
x_{1}=0.5
$$

$$
x_{2}=0
$$

$$
x_{3}=0.5
$$

$r=-0.5$
τ_{\square} Blat to loses.
3.] In the two-player, two-finger Cora game, each player shows one or two fingers, and simultaneously guesses the number of fingers the opponent will show. The player making the correct guess wins an amount equal to the total number of fingers shown. Otherwise, the game is a draw. Set up the problem as a two-person zero-sum game. Formulate the problem for player A and player B, and verify that the B formulation is the dual problem to the A formulation. Solve them both in Excel.

- Let $\left(n_{1}, n_{2}\right)$ be each players strategy where n_{1} is the number of fingers played are n_{2} is the number of fingers guessed.
- Then the reward matrix for player A is below:

Plage A's LP:
Maximize $z=V$
Subject to

$$
\begin{aligned}
& V+2 x_{2}-3 x_{3} \leq 0 \\
& V-2 x_{1}+3 x_{4} \leq 0 \\
& V+3 x_{1}-4 x_{4} \leq 0 \\
& V-3 x_{2}+4 x_{3} \leq 0 \\
& x_{1}+x_{2}+x_{3}+x_{4}=1 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0, v u \sqrt{3}
\end{aligned}
$$

Excel Solution:

$$
x_{2}=.6, x_{3}=.4, x_{1}=x_{4}=0 ; \quad v=0
$$

Decision Varvúbles:
Let $x_{i}=$ proborbilly that Player A uses strategy Ai
Let $y_{j}=$ probobillob tat Player B uses strategy B_{j}

Player ; LP:
Minimize $z=\omega$
Sulgecet to

$$
\begin{aligned}
& w-2 y_{2}+3 y_{3} \geq 0 \\
& w+2 y_{1}-3 y_{4} \geq 0 \\
& w-3 y_{1}+4 y_{4} \geq 0 \\
& w+3 y_{2}-4 y_{3} \geq 0 \\
& y_{1}+y_{2}+y_{3}+y_{4}=1 \\
& y_{1} y_{2}, y_{3}, y_{4} \geq 0, w u \sqrt{3}
\end{aligned}
$$

Excel Solution:

$$
y_{2}=.6, y_{3}=.4, \quad y_{1}=y_{4}=0 ; \quad w=0
$$

