§11.2: Two-Person Constant-Sum Games: Mixed Strategies
1.] Two players, A and B, play the coin-tossing game. Each player, unbeknownst to th other chooses a head (H) or a tail (T). Both players would reveal their choices simultaneously. If they match $(H H$ or $T T)$, player A receives $\$ 1$ from B. Otherwise, A pays B. Set up the reward matrix for player A and find the value of the game by considering mixed strategies from each player.

2.] Consider the following game where player A has two strategies and player B has four strategies. The reward matrix is in terms of payoff to player A. Determine the value of the game and the strategies employed by each player that results in the optimal saddle point solution.

B's Pure Strategy A^{\prime} Expected lint

$$
\begin{aligned}
& B_{1} \\
& B_{2} \\
& B_{3} \\
& B_{4}
\end{aligned}
$$

* Susie each expected sabre is a linear function of x_{1}, we can graph it below.

A! Pure Strategy B's Expected Pant
A_{1}

$$
2 y_{1}+2 y_{2}+3 y_{3}-y_{4}
$$

A_{2}

* we caul graphiailly represent the two expected values. However, from A's graph we see that strategics B_{3} at B_{4} will yield the optimal value of the game, $v=2.5$. Hence, a combuastrin of y_{3} at y_{4} is an optivel strategy for B. Let $y_{1}=y_{2}=0$, thew $y_{4}=1-y_{3}$ and

$$
\begin{aligned}
& 3 y_{3}-\left(1-y_{3}\right)=4 y_{3}-1 \\
& 2 y_{3}+6\left(1-y_{3}\right)=-4 y_{3}+6
\end{aligned}
$$

The intersection will greed the optimal strategy:

$$
4 y_{5}-1=-4 y_{3}+6 \Rightarrow y_{3}=\frac{7}{8}, y_{4}=\frac{1}{8}
$$

solutions involung B_{z} exist as well.
Maxims $=2.5$ orcus when $x_{1}=0.5$.
Hence, A should play A_{1} ad A_{2} with proloabilities $x_{1}=0.5$ al $x_{2}=0.5$. = A's row minitua
value of the game: $v=2.5$

