§1.3: Transforming and Combining Functions
1.] Suppose $g(x)=\sqrt{x+3}-1$. Identify the "parent" function) $f(x)$, that has been transformed, then describe the transformations. Sketch the parent function, $f(x)$, and the transformed function, $g(x)$, on the grid below.

$$
\text { Parent: } f(x)=\sqrt{x}
$$

Nev: $g(x)=\sqrt{x+3}-1$ The graph of $g(x)$ has the same shape of $f(x)$ but shifted 3 units to the left ard 1 unit down.
2.] For each of the graphs sketched below, find a possible formula for the function.

Parent: $f(x)=x^{2}$
New: $g(x)=(x+3)^{2}$
Parent: $f(x)=|x|$
New: $g(x)=-|x-2|+2$
3.] Let $f(x)=3 x$ and $g(x)=x^{3}-8$. Find an expression for $(f+g)(x)$ and $(f / g)(x)$, and determine the domain of each function.
$(f+g)(x)=3 x+x^{3}-8^{(-\infty}=x^{3}+3 x-8^{\text {Domanininil }}: \mathbb{R},(-\infty)$ $(f / g)(x)=\frac{3 x}{x^{3}-8} \leftarrow$ Ratonizl Domain: $x \neq 2,(-\infty, 2) \cup(2, \infty)$
4.] Let $f(x)=x^{2}$ and $g(x)=x^{3}+1$. Find an expression for $(f \circ g)(x)$ and $(g \circ f)(x)$. Are they the same function?
$(f \circ g)(x)=f(g(x))=f\left(x^{3}+1\right)=\left(x^{3}+1\right)^{2}=\left(x^{3}+1\right)\left(x^{3}+1\right)=x^{6}+x^{3}+x^{3}+1=x^{6}+2 x^{3}+1$
$(g \circ f)(x)=g(f(x))=g\left(x^{2}\right)=\left(x^{2}\right)^{3}+1=x^{6}+1$

5.] Use the graph of $f(x)$ (on the left) and the graph of $g(x)$ (on the right) to evaluate the following function values, if they exist:

a.) $(f-g)(1)=f(1)-g(1)=2-3=-1$
b.) $(f+g)(3)=f(3)+g(3)=2+1=3$
c.) $(f g)(4)=f(4) \cdot g(4)=4 \cdot 0=0$
d.) $(f / g)(1)=f(1) / g(1)=z / 3$
e.) $(g / f)(2)=g(2) / f(2)=2 / 0 \rightarrow 0 N E$
f.) $(f \circ g)(2)=f(g(2))=f(z)=0$
g.) $(g \circ f)(2)=g(f(2))=g(0)=4$

