Name:

Instructions: All solutions should be prepared carefully and neatly. All solution sets shall be completed on this packet and submitted by uploading a scan or picture of your written work to D2L by 11:59 PM on the due date below. Submit only a single pdf file of your entire packet. Desmos graphs can be submitted separately. The mobile app called Genius Scan works well. Use a PENCIL and if you make a mistake, use an eraser. This assignment is graded on effort, completeness, and neatness for a total of 5 points. Careless presentation (e.g. bad handwriting, pen scribbles, doodles, wasted space, etc) will result in a deduction of points at my discretion. Submitted work that does not demonstrate clearly the process by which one arrived at the answer may result in a loss of points. Any parts to any questions that are not answered will also result in a loss of points. Academic dishonesty will not be tolerated.

Problem Set VIII
 MAT 181 - Calculus I

Due: Friday, May $3{ }^{\text {rd }}$ by 11:59 PM on D2L
Read: Sections 5.2-5.4

1. Suppose $\int_{1}^{3} f(x) d x=5$ and $\int_{1}^{3} g(x) d x=-11$. Evaluate the following, if possible:
(a) $\int_{1}^{3}(2 f(x)-4 g(x)) d x$
(b) $\int_{3}^{1} 3 f(x) d x$
(c) $\int_{3}^{1} \frac{f(x)}{1+f(x)} d x$
(d) $\int_{1}^{2} f(x) d x+\int_{2}^{3} f(x) d x$
(e) $\int_{1}^{1} f(x) \sqrt{|g(x)|} d x$
(f) $\int_{1}^{3} f(x) g(x) d x$
(g) $\int_{1}^{6} f(x)-2 g(x) d x$
(h) Find the average value of $f(x)$ over the interval $[1,3]$.
2. Compute the area under the function $f(x)=4 x^{2}+3 x+2$ on the interval $[0,3]$ exactly by evaluating the integral using the limit definition of a Riemann Sum using rectangles with right-hand endpoints as the sample points.
3. Suppose the following graph is of the function $y=f(t)$:

Consider two area functions defined by $A(x)=\int_{0}^{x} f(t) d t$ and $B(x)=\int_{2}^{x} f(t) d t$. Evaluate the following:
(a) $A(2)$
(b) $B(5)$
(c) $A(0)$
(d) $B(8)$
(e) $A(8)$
(f) $A(5)$
(g) $B(2)$
(h) $B(0)$
(i) $A^{\prime}(2)$
4. (This question spans two pages.) Evaluate the following indefinite and definite integrals using the Fundamental Theorem of Calculus and u-substitution where necessary:
(a) $\int_{-2}^{1}\left(x^{2}-x-6\right) d x$
(b) $\int_{0}^{\pi / 4} 2 \cos (x) d x$
(c) $\int_{0}^{4} 10 \ln (2) 2^{x} d x$
(d) $\int_{0}^{1} x \sqrt[3]{x} d x$
(e) $\int_{1}^{\sqrt{3}} \frac{8}{1+x^{2}} d x$
(f) $\int 8 x \cos \left(4 x^{2}+3\right) d x$
(g) $\int \frac{2 x}{4 x^{2}+1} d x$
(h) $\int \frac{5^{\arctan (x)}}{1+x^{2}} d x$
(i) $\int_{0}^{4} \frac{x}{\sqrt{9+x^{2}}} d x$
5. Treat this question as a "One-Question Calculus Final Exam." This question covers most topics that we discussed this semester. The function, $y=f(x)$, below is piecewise and the shape in the middle is a semi-circle. Answer all the questions that follow.

(a) Compute $f^{\prime}(4)$.
(b) Compute $\int_{-10}^{-6} f(x) d x$.
(c) Compute $\int_{3}^{10}|f(x)| d x$.
(d) Does $f(x)$ satisfy Rolle's Theorem on $[-2,2]$? If not, say why. If so, find the value of c guaranteed by the theorem.
(e) Compute $\lim _{x \rightarrow 3^{-}} f(x)$.
(f) Compute $\lim _{x \rightarrow 3^{+}} f(x)$.
(g) Compute $\lim _{x \rightarrow 3} f(x)$.
(h) Compute $\lim _{x \rightarrow 5}|f(x)|$.
(i) Suppose $A(x)=\int_{0}^{x} f(t) d t$, then compute $A(2)$.
(j) Suppose $A(x)$ is defined as in the previous problem. What is $A^{\prime \prime}(0)$?
(k) Suppose $h(x)=f\left(x^{2}\right)$, then compute $h^{\prime}(-3)$.
(l) Suppose $B(x)=\int_{-4}^{x} f(t) d t$. Compute $B(-2)$.
(m) Let $B(x)$ be defined as in the previous problem. $B(x)$ has three critical points, what are they? Only one of these critical points is a local extrema, which one is it? Is it a local max or a local min?
(n) Is the equation $f^{\prime}(0)=0$ true, false, or cannot be determined?
(o) Is $f^{\prime \prime}(1.7)>0, f^{\prime \prime}(1.7)<0, f^{\prime \prime}(1.7)=0$, or can it not be determined?
(p) Compute $\lim _{x \rightarrow-2^{-}} \frac{f(x)-f(-2)}{x+2}$.
(q) Does $f(x)$ satisfy the Mean Value Theorem on $[-4,0]$? If not, say which part of the theorem is not satisfied.
(r) Over the interval $[3,10]$, what are the absolute minimum and absolute maximum values of $f(x)$?
(s) Compute f(3).
(t) Let $k(x)=-2 f(x+1)+3$. Find $k(-5)$.
(u) On the interval $(-10,-5)$, what would be an antiderivative of $f(x)$?
(v) What is the domain of $f(x)$?
(w) What is the domain of $f^{\prime}(x)$?
(x) Compute $\int_{-10}^{-6}-f(x)+2 d x$.
(y) For a function to be continuous at $x=a$, three conditions must be satisfied. Which of these three conditions fails for $f(x)$ at $x=-5$?
(z) Compute $\lim _{x \rightarrow 8} \frac{f(x)}{e^{-x+8}-x+7}$.

