Name:

Instructions: All solutions should be prepared carefully and neatly. All solution sets shall be completed on this packet and submitted by uploading a scan or picture of your written work to D2L by 11:59 PM on the due date below. Submit only a single pdf file of your entire packet. Desmos graphs can be submitted separately. The mobile app called Genius Scan works well. Use a PENCIL and if you make a mistake, use an eraser. This assignment is graded on effort, completeness, and neatness for a total of 5 points. Careless presentation (e.g. bad handwriting, pen scribbles, doodles, wasted space, etc) will result in a deduction of points at my discretion. Submitted work that does not demonstrate clearly the process by which one arrived at the answer may result in a loss of points. Any parts to any questions that are not answered will also result in a loss of points. Academic dishonesty will not be tolerated.

## Problem Set VII <br> MAT 181 - Calculus I

Due: Friday, April $26^{\text {th }}$ By 11:59 PM on D2L
Read: Sections 4.6, 4.7, 5.1, and 5.2

1. A poster is to contain 150 square inches of printed matter, surrounded by margins that are 3 inches wide on the top and bottom, and 2 inches on each side. Find the dimensions for the poster that minimizes the total area. Submit a Desmos graph of the objective function (after you eliminate the $y$ variable) that confirms the minimum value of the function.
2. [This problem spans two pages.] Compute the general antiderivative of the following functions:
(a) $f(x)=1$
(b) $f(x)=3 x^{2}$
(c) $f(x)=x^{2}+\frac{1}{2}$
(d) $f(x)=x^{69420}+\frac{x}{2}$
(e) $f(x)=0$
(f) $f(x)=-\frac{1}{x^{2}}$
(g) $f(x)=\frac{1}{1+x^{2}}$
(h) $f(x)=\frac{8}{1+x^{2}}$
(i) $f(x)=\frac{102}{\sqrt{1-x^{2}}}$
(j) $f(x)=\frac{6}{x}$
(k) $f(x)=\sqrt[5]{x^{2}}$
(l) $f(x)=\ln (10) \cdot 10^{x}$
(m) $f(x)=10^{x}$
(n) $f(x)=(x+1)^{2}$
(o) $f(x)=\left(5 x^{2}+1\right)\left(2+x^{-1}\right)$
(p) $f(x)=\sin (x)-\cos (x)+\sec (x) \tan (x)-\csc ^{2}(x)$
(q) $f(x)=e^{x+1}$
(r) $f(x)=\frac{4 x^{4}-6 x^{2}}{x}$, where $x \neq 0$
(s) $f(x)=\frac{\sin (x)-1}{\cos ^{2}(x)}$
3. For each problem below, sketch your rectangles on the graph provided and round your answers to 3 decimal places. Estimate the area under the graph of $f(x)=\sqrt{x}$ from $x=0$ to $x=5$ with $n=10$ approximating rectangles using
(a) right endpoints.

(b) left endpoints.

(c) midpoints.

4. The graph of $f(x)=x^{3}-x$ is shown below on the interval [0,1.5]. Approximate the area "under" this curve using $n=5$ rectangles. Instead of using the typical right-hand, left-hand, or midpoint rules, use the following sample points inside each interval to construct the height of the rectangles:

$$
x_{1}^{*}=0.2, \quad x_{2}^{*}=0.5, \quad x_{3}^{*}=0.7, \quad x_{4}^{*}=1, \quad x_{5}^{*}=1.4
$$

Be sure to calculate $\Delta x$ first and sketch your rectangles on the graph provided. If necessary, round your answers to 3 decimal places.

5. Application Problem: Suppose the acceleration function of an object moving along a line is given by $a(t)=0.2 t$. Find the position and velocity functions, denoted by $s(t)$ and $v(t)$ respectively, of the object if you know the initial velocity was $v(0)=-3$ and initial position was $s(0)=1$.

