Name: _

Instructions: All solutions should be prepared carefully and neatly. All solution sets shall be completed on this packet and submitted by uploading a scan or picture of your written work to D2L by 11:59 PM on the due date below. **Submit only a single pdf file of your entire packet. Desmos graphs can be submitted separately.** The mobile app called *Genius Scan* works well. Use a PENCIL and if you make a mistake, use an eraser. This assignment is graded on effort, completeness, and neatness for a total of 5 points. Careless presentation (e.g. bad handwriting, pen scribbles, doodles, wasted space, etc) will result in a deduction of points at my discretion. Submitted work that does not demonstrate clearly the process by which one arrived at the answer may result in a loss of points. Any parts to any questions that are not answered will also result in a loss of points. Academic dishonesty will not be tolerated.

PROBLEM SET VII

MAT 181 – Calculus I

Due: Friday, April 26^{th} by 11:59 PM on D2L

Read: Sections 4.6, 4.7, 5.1, and 5.2

1. A poster is to contain 150 square inches of printed matter, surrounded by margins that are 3 inches wide on the top and bottom, and 2 inches on each side. Find the dimensions for the poster that minimizes the total area. Submit a Desmos graph of the objective function (after you eliminate the y variable) that confirms the minimum value of the function.

[]

- 2. [This problem spans two pages.] Compute the general antiderivative of the following functions: (a) f(x) = 1
 - (b) $f(x) = 3x^2$
 - (c) $f(x) = x^2 + \frac{1}{2}$
 - (d) $f(x) = x^{69420} + \frac{x}{2}$
 - (e) f(x) = 0
 - (f) $f(x) = -\frac{1}{x^2}$
 - (g) $f(x) = \frac{1}{1+x^2}$
 - (h) $f(x) = \frac{8}{1+x^2}$

(i)
$$f(x) = \frac{102}{\sqrt{1-x^2}}$$

(j)
$$f(x) = \frac{6}{x}$$

(k)
$$f(x) = \sqrt[5]{x^2}$$

(l) $f(x) = \ln(10) \cdot 10^x$

(m) $f(x) = 10^x$

(n)
$$f(x) = (x+1)^2$$

(o)
$$f(x) = (5x^2 + 1)(2 + x^{-1})$$

(p)
$$f(x) = \sin(x) - \cos(x) + \sec(x)\tan(x) - \csc^2(x)$$

(q)
$$f(x) = e^{x+1}$$

(r)
$$f(x) = \frac{4x^4 - 6x^2}{x}$$
, where $x \neq 0$

(s)
$$f(x) = \frac{\sin(x) - 1}{\cos^2(x)}$$

3. For each problem below, sketch your rectangles on the graph provided and round your answers to 3 decimal places. Estimate the area under the graph of $f(x) = \sqrt{x}$ from x = 0 to x = 5 with n = 10 approximating rectangles using

4. The graph of $f(x) = x^3 - x$ is shown below on the interval [0, 1.5]. Approximate the area "under" this curve using n = 5 rectangles. Instead of using the typical right-hand, left-hand, or midpoint rules, use the following sample points inside each interval to construct the height of the rectangles:

$$x_1^* = 0.2,$$
 $x_2^* = 0.5,$ $x_3^* = 0.7,$ $x_4^* = 1,$ $x_5^* = 1.4$

Be sure to calculate Δx first and sketch your rectangles on the graph provided. If necessary, round your answers to 3 decimal places.

5. <u>Application Problem</u>: Suppose the acceleration function of an object moving along a line is given by a(t) = 0.2t. Find the position and velocity functions, denoted by s(t) and v(t) respectively, of the object if you know the initial velocity was v(0) = -3 and initial position was s(0) = 1.