Name: Brabs Everite

Instructions: All solutions should be prepared carefully and neatly. All solution sets shall be completed on this packet or on white unlined paper, and handed in at the end of class on the due date below. If you are working remotely, upload pictures of your written work to D2L by 11:59 PM on the due date below. Careless presentation (e.g. bad handwriting, pen scribbles, doodles, wasted space, etc) will result in a deduction of points at my discretion. Use a PENCIL and if you make a mistake, use an eraser. Submitted work that does not demonstrate clearly the process by which one arrived at the answer will not receive credit of any kind. If a problem asks for an Excel or Matlab solution, then upload your Excel/Matlab program files to D2L as well. Academic dishonesty will not be tolerated.

Problem Set V
MAT 362-010 - Operations Research II
Due: Friday, May 5 by 11:59 PM on D2L
Read: Sections 14.1-14.3

Problem Number	Available Points	Your Points
1	8	$\mathbf{8}$
2	8	$\mathbf{8}$
Total	16	$\mathbf{1 6}$

1. Graphically solve the following zero-sum game. The reward matrix is in terms of Player A. Once you found one player's strategy determine the strategy of the other player.

$\frac{A^{\prime} s \text { Strategies }}{}$	D's Ejected losses A_{1}
$A_{y_{1}}+0 y_{2} \rightarrow \omega=4 y_{1}$.	
A_{2}	$y_{1}+y_{2}=3 y_{1}+1-y_{1} \rightarrow \omega=2 y_{1}+1$ A_{3}
$y_{1}+2 y_{2}=y_{1}+2\left(1-y_{1}\right) \rightarrow \omega=-y_{1}+2$	

- B's worst losses - -B's minimum max losses

B's Solution:
Dulerection of $A_{2}{ }^{\frac{3}{3} A_{3}}$

$$
\begin{aligned}
& 2 y_{1}+1=-y_{1}+2 \\
& 3 y_{1}=1 \\
& y_{1}=\frac{1}{3}, y_{2}=\frac{2}{3}
\end{aligned}
$$

Value: $w=5 / 3$
A's Solution
Slice the value of the game is for $A_{2} \& A_{2}$, we how $x=0$.

$$
\begin{aligned}
B_{1}: & 4 x_{1}+3 x_{2}+x_{3}=3 x_{2}+x_{3} \\
B_{2}: & 6 x_{1}+x_{2}+2 x_{3}=x_{2}+2 x_{3} \\
& 3 x_{2}+x_{3}=x_{2}+2 x_{3} \\
\Rightarrow & 2 x_{2}=x_{3} \\
\Rightarrow & 2 x_{2}=1-x_{2} \\
\Rightarrow & x_{2}=\frac{1}{3}, x_{3}=\frac{2}{3} \quad v=5 / 3
\end{aligned}
$$

2. Consider the following reward matrix for Player A for a zero-sum game. Formulate an LP for both players and solve both of them in Excel. Include your formulations and the solutions in the space below. Who wins the game?

	B_{1}	B_{2}	B_{3}	B_{4}	B_{5}
A_{1}	1	-3	2	-2	1
A_{2}	2	3	0	3	-2
A_{3}	0	4	-1	-3	2
A_{4}	-4	0	-2	2	-1

Player A:
B^{\prime} S Slategy A's Expectation
$B_{1} \quad x_{1}+2 x_{2}+0 x_{3}-4 x_{4}$
$B_{2} \quad-3 x_{1}+3 x_{2}+4 x_{3}+a x_{1}$
Bs $\quad 2 x_{1}+0 x_{2}-x_{3}-2 x_{y}$
$B_{4} \quad-2 x_{1}+3 x_{2}-3 x_{3}+2 x_{4}$
$B_{5} \quad x_{1}-2 x_{2}+2 x_{3}-x_{4}$
A^{\prime} ' LP:
Maximize $z=v$
Subject to

$$
\begin{aligned}
& v \leq x_{1}+2 x_{2}+0 x_{3}-4 x_{4} \\
& v \leq-3 x_{1}+3 x_{2}+4 x_{3}+0 x_{4} \\
& v \leq 2 x_{1}+0 x_{2}-x_{3}-2 x_{4} \\
& v \leq-2 x_{1}+3 x_{2}-3 x_{3}+2 x_{4} \\
& v \leq x_{1}-2 x_{2}+2 x_{3}-x_{4} \\
& x_{1}+x_{2}+x_{3}+x_{4}=1 \\
& v=u r s, x_{i} \geq 0
\end{aligned}
$$

Excel sountion:

