Now - Brabs Emenik
Instructions: All solutions should be prepared carefully and neatly. All solution sets shall be completed on this packet and submitted by uploading a scan or picture of your written work to D2L by 11:59 PM on the due date below. Submit only a single pdf file of your entire packet. Desmos graphs can be submitted separately. The mobile app called Genius Scan works well. Use a PENCIL and if you make a mistake, use an eraser. This assignment is graded on effort, completeness, and neatness for a total of 5 points. Careless presentation (e.g. bad handwriting, pen scribbles, doodles, wasted space, etc) will result in a deduction of points at my discretion. Submitted work that does not demonstrate clearly the process by which one arrived at the answer may result in a loss of points. Any parts to any questions that are not answered will also result in a loss of points. Academic dishonesty will not be tolerated.

Problem Set V
 MAT 181 - Calculus I

Due: Friday, March 29, by 11:59 PM on D2L
 Read: Sections 3.5-3.7

1. Differentiate the following relations implicitly to find $\frac{d y}{d x}$:
(a) $3 x^{4}+2 y^{3}=10834$

$$
\begin{aligned}
& \frac{d}{d x}\left(3 x^{4}\right)+\frac{d}{d x}\left(2 y^{3}\right)=\frac{d}{d x}(10834) \\
\Rightarrow & 12 x^{3}+6 y^{2} \frac{d y}{d x}=0 \Rightarrow 6 y^{2} \frac{d y}{d x}=-12 x^{3} \Rightarrow \frac{d y}{d x}=-\frac{2 x^{3}}{y^{2}}
\end{aligned}
$$

(b) $15 x^{2}-4 y^{6}=2 x^{2} y^{3}$

$$
\frac{d}{d x}\left(15 x^{2}\right)-\frac{d}{d x}\left(4 y^{6}\right)=\frac{d}{d x}\left(2 x^{2} y^{3}\right)
$$

$$
\Rightarrow \quad 30 x-24 y^{5} \frac{d y}{d x}=4 x y^{3}+2 x^{2} \cdot 3 y^{2} \frac{d y}{d x}
$$

$$
\begin{gathered}
\Rightarrow \quad 30 x-4 x y^{3}=24 y^{5} \frac{d y}{d x}+6 x^{2} y^{2} \frac{d y}{d x} \\
\Rightarrow \quad 30 x-4 x y^{3}=\left(24 y^{5}+6 x^{2} y^{2}\right) \frac{d y}{d x} \\
\Rightarrow \quad(c) \cos (x+y)=y^{2} e^{x}+69 \\
\frac{d}{d x}(\cos (x+y))=\frac{d}{d x}\left(y^{2} e^{x}\right)+\frac{d}{d x}(69)
\end{gathered}
$$

$$
\Rightarrow-\sin (x+y) \cdot \frac{d}{d x}(x+y)=2 y \frac{d y}{d x} e^{x}+y^{2} e^{x}
$$

$$
\Rightarrow-\sin (x+y) \cdot\left(1+\frac{d y}{d x}\right)=2 y e^{x} \frac{d y}{d x}+y^{2} e^{x}
$$

$$
\Rightarrow-\sin (x+y)-\sin (x+y) \frac{d y}{d x}=2 y e^{x} \frac{d y}{d x}+y^{2} e^{x}
$$

$$
\Rightarrow-\sin (x+y) \frac{d y}{d x}-2 y e^{x} \frac{d y}{d x}=\sin (x+y)+y^{2} e^{x}
$$

$$
\Rightarrow \quad\left(-\sin (x+y)-2 y e^{x}\right) \frac{d y}{d x}=\sin (x+y)+y^{2} e^{x}
$$

2. Consider the curve defined by the equation $x^{3}+y^{2}=\frac{5}{8} x y^{3}$. Verify that $(1,2)$ lies on this curve. Find the equation of the tangent line to the curve at the point $(1,2)$. Submit a Desmos graph of the curve defined by the equation and the tangent line on the same plot.
Verify: $1^{3}+2^{2} \stackrel{?}{=} \frac{5}{8}(1)(2)^{3} \Rightarrow 1+4 \stackrel{?}{=} \frac{5}{8} \cdot 8 \Rightarrow 5=5$ The point $(1,2)$ is on the curve.

$$
\begin{aligned}
& \text { Slope: } \frac{d}{d x}\left(x^{3}\right)+\frac{d}{d x}\left(y^{2}\right)=\frac{d}{d x}\left(\frac{\rho}{8} x y^{3}\right) \\
& \Rightarrow \quad 3 x^{2}+2 y \frac{d y}{d x}=\frac{5}{8} y^{3}+\frac{5}{8} x \cdot 3 y^{2} \frac{d y}{d x} \\
& \Rightarrow \quad 2 y \frac{d y}{d x}-\frac{15}{8} x y^{2} \frac{d y}{d x}=\frac{5}{8} y^{3}-3 x^{2} \\
& \Rightarrow \quad\left(2 y-\frac{15}{8} x y^{2}\right) \frac{d y}{d x}=\frac{5}{8} y^{3}-3 x^{2} \\
& \begin{array}{c}
\Rightarrow \quad \frac{d y}{d x}=\frac{5 y^{3} y^{3}-3}{2 y-\frac{5}{8}} \\
\text { Tampent Line: } \quad y=m x+b
\end{array} \\
& \begin{array}{l}
2=-\frac{4}{7}(1)+b \\
\frac{14}{7}+\frac{4}{7}=b \\
\frac{18}{7}=b
\end{array} \quad y=-\frac{4}{7} x+\frac{18}{7} \\
& \begin{array}{l}
2=-\frac{4}{7}(1)+b \\
\frac{14}{7}+\frac{4}{7}=b \\
\frac{18}{7}=b
\end{array} \quad y=-\frac{4}{7} x+\frac{18}{7} \\
& \begin{array}{l}
2=-\frac{4}{7}(1)+b \\
\frac{14}{7}+\frac{4}{7}=b \\
\frac{18}{7}=b
\end{array} \quad y=-\frac{4}{7} x+\frac{18}{7}
\end{aligned}
$$

3. Find the equation of the line tangent to the graph of $f(x)=\frac{(4+x) 2^{\ln (x)}}{x^{3} 2^{x}}$ at the point $(1, f(1))$. Do not use any decimal approximations.
Slope: $f(x)=\frac{\left[(4+x) 2^{2 \ln (x)}\right]^{\prime}\left(x^{3} 2^{x}\right)-(4+x) 2^{\ln (x)}\left[x^{3} 2^{x}\right]^{\prime}}{\left(x^{3} z^{x}\right)^{2}}$

$$
\begin{aligned}
& \Rightarrow f^{\prime}(x)=\frac{\left[2^{\ln (x)}+(4+x) \ln (2) 2^{(x) \cdot 1} \cdot \frac{1}{x}\right]\left(x^{3} 2^{x}\right)-(4+x) 2^{\ln (x)}\left[3 x^{2} 2^{x}+x^{3} \ln (2) \cdot 2^{x}\right]}{\left(x^{3} 2^{x}\right)^{2}} \\
& \Rightarrow f^{\prime}(1)=\frac{\left[2^{\ln (1)}+(4+1) \ln (2) 2^{2 \ln (1)} \cdot 1\right]\left(1^{3} 2^{\prime}\right)-(4+1) 2^{\ln (1)}\left[3(1)^{2} 2^{1}+(1)^{3} \ln (2) \cdot 2^{\prime}\right]}{\left(1^{3} \cdot 2^{1}\right)^{2}} \\
& \Rightarrow f^{\prime}(1)=\frac{\left[2^{0}+5 \ln (2) \cdot 2^{2}\right](2)-5 \cdot 2^{2}[6+2 \ln (21]}{4} \\
& \Rightarrow f^{\prime}(1)=\frac{[1+5 \ln (2)] \cdot 2-5[6+2 \ln (2)]}{4} \\
& \Rightarrow f^{\prime}(1)=\frac{2+10 \ln (2)-30-10 \ln (2)}{4} \\
& \Rightarrow f^{\prime}(1)=\frac{-28}{4} \\
& \Rightarrow f^{\prime}(1)=-7
\end{aligned}
$$

Tangent Live:

$$
\begin{array}{ll}
\text { gent Live: } \\
\text { pout: }(1, f(1))=(1,5 / 2) \\
\text { slops: } m=f^{\prime}(1)=-7 & y=m x+b \\
& \frac{5}{2}=-7(1)+b
\end{array}\left\{\begin{array}{l}
b=\frac{5}{2}+\frac{14}{2}=\frac{19}{2} \\
y=-7 x+\frac{19}{2}
\end{array}\right.
$$

4. For each of the following functions, find the derivative function $f^{\prime}(x)$ using derivative rules developed in class. Simplify as much as humanly possible.
(a) $f(x)=\arcsin (2 \sqrt{x})$

$$
\begin{aligned}
\quad f^{\prime}(x) & =\frac{1}{\sqrt{1-(2-\sqrt{x})^{2}}} \cdot \frac{2}{2 \sqrt{x}} \\
\Rightarrow \quad f^{\prime}(x) & =\frac{1}{\sqrt{x}-\sqrt{1-4 x}}
\end{aligned}
$$

$$
\text { (b) } f(x)=\ln \left(x^{18}+4 x-6\right)
$$

$$
f^{\prime}(x)=\frac{1}{x^{.18}+4 x-6} \cdot\left(.18 x^{-.82}+4\right)
$$

$$
\Rightarrow f^{\prime}(x)=\frac{.18 x^{-.82}+4}{x^{.18}+4 x-6}
$$

(c) $f(x)=2^{\arctan (x+2)}$

$$
\left.\begin{array}{rl}
f^{\prime}(x) & =\ln (2) \cdot 2^{\arctan (x+2)} \cdot \frac{1}{1+(x+2)^{2}} \cdot 1 \\
\Rightarrow & f^{\prime}(x)
\end{array}\right)=\frac{\ln (2) \cdot 2^{\arctan (x+2)}}{1+(x+2)^{2}} \quad .
$$

(d) $f(x)=\log _{7}\left(\log _{5}\left(\log _{2}(x)\right)\right)$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{\ln _{4}(7) \cdot \log _{g}\left(\lg _{2}(x)\right.} \cdot \frac{1}{0.51) \lg _{g}(x)} \cdot \frac{1}{\ln _{1}(2) \cdot x} \\
& \Rightarrow f^{\prime}(x)=\frac{1}{\ln (t)(\ln (5) \ln (2) x \log (x) \log (\lg (x)}
\end{aligned}
$$

5. Application Problem: A boat is towed toward a dock by a cable attached to a winch that stands 10 feet above the water level (see figure below). Let θ be the angle of elevation of the winch and let ℓ be the length of the cable as the boat is towed toward the dock.
(a) Find $\frac{d \theta}{d \ell}$ in terms of ℓ only.

From the figure, we have

$$
\left.\begin{array}{ll}
& \sin (\theta)=\frac{10}{l} \\
\Rightarrow & \theta=\operatorname{arsin}\left(\frac{10}{\ell}\right) \\
\Rightarrow & \frac{d \theta}{d l}=\frac{1}{\sqrt{1-\left(\frac{10}{2}\right)^{2}}} \cdot\left(-\frac{10}{l^{2}}\right.
\end{array}\right) \quad\left\{\begin{array}{l}
\frac{d \theta}{l^{2} \sqrt{1-\frac{100}{l^{2}}}}
\end{array}\right.
$$

(b) Compute $\frac{d \theta}{d \ell}$ when $\ell=50,20$, and 11 ft . Explain what would happen as $\ell \rightarrow 10^{+}$. Notice from the figure that θ is increasing as the boat is getting closer to the dock. Why, then, is $d \theta / d \ell$ negative?

$$
\begin{aligned}
& \left.\frac{d \theta}{d t}\right|_{\text {exon }}=\frac{-10}{s \rho \sqrt{50^{2}-100}}=-0.00408 \mathrm{rdanis} / 6 \mathrm{ot} \\
& \left.\frac{d \theta}{d t}\right|_{l=20}=\frac{-10}{20 \sqrt{20^{2}-100}}=-0.02887 \mathrm{rdaris} / 65 \mathrm{bt}
\end{aligned}
$$

$$
\left.\frac{d \theta}{d \pi}\right|_{e=11}=\frac{-10}{11 \sqrt{11^{2}-100}}=-0.19838 \mathrm{radan} / y_{60} t
$$

- As $\ell \rightarrow 10^{+}$, 㕷 $\rightarrow-\infty$.
 (O is sinceuais), the change in leash is gothic (l is decmenj j). - Hence, $d a>0$ deco $\Rightarrow \frac{d \theta c}{d e}<0$.

