Name:

Instructions: All solutions should be prepared carefully and neatly. All solution sets shall be completed on this packet and submitted by uploading a scan or picture of your written work to D2L by 11:59 PM on the due date below. Submit only a single pdf file of your entire packet. Desmos graphs can be submitted separately. The mobile app called Genius Scan works well. Use a PENCIL and if you make a mistake, use an eraser. This assignment is graded on effort, completeness, and neatness for a total of 5 points. Careless presentation (e.g. bad handwriting, pen scribbles, doodles, wasted space, etc) will result in a deduction of points at my discretion. Submitted work that does not demonstrate clearly the process by which one arrived at the answer may result in a loss of points. Any parts to any questions that are not answered will also result in a loss of points. Academic dishonesty will not be tolerated.

Problem Set V
 MAT 181 - Calculus I

Due: Friday, March 29, by 11:59 PM on D2L
 Read: Sections 3.5-3.7

1. Differentiate the following relations implicitly to find $\frac{d y}{d x}$:
(a) $3 x^{4}+2 y^{3}=10834$
(b) $15 x^{2}-4 y^{6}=2 x^{2} y^{3}$
(c) $\cos (x+y)=y^{2} e^{x}+69$
2. Consider the curve defined by the equation $x^{3}+y^{2}=\frac{5}{8} x y^{3}$. Verify that $(1,2)$ lies on this curve. Find the equation of the tangent line to the curve at the point $(1,2)$. Submit a Desmos graph of the curve defined by the equation and the tangent line on the same plot.
3. Find the equation of the line tangent to the graph of $f(x)=\frac{(4+x) 2^{\ln (x)}}{x^{3} 2^{x}}$ at the point $(1, f(1))$. Do not use any decimal approximations.
4. For each of the following functions, find the derivative function $f^{\prime}(x)$ using derivative rules developed in class. Simplify as much as humanly possible.
(a) $f(x)=\arcsin (2 \sqrt{x})$
(b) $f(x)=\ln \left(x^{.18}+4 x-6\right)$
(c) $f(x)=2^{\arctan (x+2)}$
(d) $f(x)=\log _{7}\left(\log _{5}\left(\log _{2}(x)\right)\right)$
5. Application Problem: A boat is towed toward a dock by a cable attached to a winch that stands 10 feet above the water level (see figure below). Let θ be the angle of elevation of the winch and let ℓ be the length of the cable as the boat is towed toward the dock.
(a) Find $\frac{d \theta}{d \ell}$ in terms of ℓ only.
(b) Compute $\frac{d \theta}{d \ell}$ when $\ell=50,20$, and 11 ft . Explain what would happen as $\ell \rightarrow 10^{+}$. Notice from the figure that θ is increasing as the boat is getting closer to the dock. Why, then, is $d \theta / d \ell$ negative?

