Name:

Instructions: All solutions should be prepared carefully and neatly. All solution sets shall be completed on this packet and submitted by uploading a scan or picture of your written work to D2L by 11:59 PM on the due date below. Submit only a single pdf file of your entire packet. Desmos graphs can be submitted separately. The mobile app called Genius Scan works well. Use a PENCIL and if you make a mistake, use an eraser. This assignment is graded on effort, completeness, and neatness for a total of 5 points. Careless presentation (e.g. bad handwriting, pen scribbles, doodles, wasted space, etc) will result in a deduction of points at my discretion. Submitted work that does not demonstrate clearly the process by which one arrived at the answer may result in a loss of points. Any parts to any questions that are not answered will also result in a loss of points. Academic dishonesty will not be tolerated.

Problem Set IV

MAT 181-050 - Calculus I
Due: Monday, March 4 by 11:59 PM on D2L
Read: Sections 3.2, 3.3, and 3.4

1. Using the appropriate rules of differentiation, find the derivative of the following functions:
(a) $f(x)=1$

$$
f^{\prime}(x)=0
$$

(b) $u(x)=\pi^{3}+12$

$$
u^{\prime}(x)=0
$$

(c) $g(t)=t^{42070}$

$$
g^{\prime}(t)=42070 t^{42069}
$$

(d) $p(t)=42070^{t}$

$$
p^{\prime}(t)=\ln (42070) \cdot 42070^{t}
$$

(e) $y(w)=4 w^{6}+14 \sqrt{w}-2^{w}$, where $w \geq 0$.

$$
y^{\prime}(\omega)=24 \omega^{5}+\frac{7}{\sqrt{\omega}}-\ln (2) \cdot 2^{\omega}
$$

(f) $q(s)=\frac{s^{5}-2 s^{2}}{s^{2}}$, where $s \neq 0$.
$q(s)=s^{3}-2 \rightarrow q^{\prime}(s)=3 s^{2}$, where $s \neq 0$.
(g) $F(x)=\frac{e^{x}}{3}-11 x^{3}$

$$
F^{\prime}(x)=\frac{e^{x}}{3}-33 x^{2}
$$

$$
\begin{aligned}
& \text { (h) } h(t)=\left(t-t^{3}\right)\left(t^{2}-1\right) \\
& h(t)=t^{3}-t-t^{5}+t^{3} \\
& h(t)=-t^{5}+2 t^{3}-t \quad h^{\prime}(t)=-5 t^{4}+6 t^{2}-1
\end{aligned}
$$

2. (This problem spans two pages.) Differentiate the following functions and simplify the expression as much as possible:
(a) $f(x)=2^{x} \sqrt{x}$

$$
\begin{aligned}
f^{\prime}(x) & =\left(2^{x}\right)^{\prime} \sqrt{x}+(\sqrt{x})^{\prime} \cdot 2^{x} \\
f^{\prime}(x) & =\ln (2) \cdot 2^{x} \sqrt{x}+\frac{1}{2 \sqrt{x}} \cdot 2^{x} \\
\Rightarrow f^{\prime}(x) & =2^{x}\left(\ln (2) \cdot \sqrt{x}+\frac{1}{2-\sqrt{x}}\right)
\end{aligned} \quad \Rightarrow \quad f^{\prime}(x)=2^{x}\left(\frac{2 \ln (2) x+1}{2-x}\right)
$$

$$
\begin{array}{ll}
& g^{\prime}(x)=\frac{(x-1)(100 x)^{\prime}-(x-1)^{\prime}(100 x)}{(x-1)^{2}} \\
\Rightarrow & g^{\prime}(x)=\frac{(x-1)(100)-100 x}{(x-1)^{2}}
\end{array} \quad, \quad g^{\prime}(x)=\frac{100 x-100-100 x}{(x-1)^{2}}
$$

$$
\begin{aligned}
& (c) h(x)=\frac{\sqrt{x}+x}{\sqrt{x}-x} \\
& h^{\prime}(x)=\frac{(\sqrt{x}-x)(\sqrt{x}+x)^{\prime}-(\sqrt{x}+x)(\sqrt{x}-x)^{\prime}}{(\sqrt{x}-x)^{2}} \\
\Rightarrow & h^{\prime}(x)=\frac{(\sqrt{x}-x)\left(\frac{1}{2 \sqrt{x}}+1\right)-(\sqrt{x}+x)\left(\frac{1}{2 \sqrt{x}}-1\right)}{(\sqrt{x}-x)^{2}} \\
\Rightarrow & h^{\prime}(x)=\frac{\left(\frac{1}{2}+\sqrt{x}-\frac{1}{2}(x-x)-\left(\frac{1}{2}-\sqrt{x}+\frac{1}{2} \sqrt{x}-x\right)\right.}{(\sqrt{x}-x)^{2}}
\end{aligned} \quad \Rightarrow h^{\prime}(x)=\frac{\frac{1}{2}+\sqrt{x}-\frac{1}{2} \sqrt{x}-x-\frac{1}{2}+\sqrt{x}-\frac{1}{2} \sqrt{x}+x}{(\sqrt{x}-x)^{2}}
$$

$$
\text { (d) } k(x)=\frac{2 x+1}{x^{3} e^{x}}
$$

$$
\begin{aligned}
& k^{\prime}(x)=\frac{\left(x^{3} e^{x}\right)(2 x+1)^{\prime}-(2 x+1)\left(x^{3} e^{x}\right)^{\prime}}{\left(x^{3} e^{x}\right)^{2}} \\
\Rightarrow & k^{\prime}(x)=\frac{x^{3} e^{x} \cdot 2-(2 x+1)\left(3 x^{2} e^{x}+x^{3} e^{x}\right)}{x^{6} e^{2 x}} \\
\Rightarrow & k^{\prime}(x)=\frac{2 x^{3} e^{x}-6 x^{3} e^{x}-2 x^{4} e^{x}-3 x^{2} e^{x}-x^{3} e^{x}}{x^{6} e^{2 x}}
\end{aligned} \quad\left[\begin{array}{l}
k^{\prime}(x)=\frac{-2 x^{4} e^{x}-5 x^{3} e^{x}-3 x^{2} e^{x}}{x^{6} e^{2 x}} \\
k^{\prime}(x)=\frac{-x^{2} e^{x}\left(2 x^{2}+5 x+3\right)}{x^{6} e^{2 x}} \\
k^{\prime}(x)=\frac{-\left(2 x^{2}+5 x+3\right)}{x^{4} e^{x}}
\end{array}\right.
$$

$$
\begin{aligned}
\text { (e) } k(x) & =\frac{1-\sin (x)}{1-\cos (x)} \\
k^{\prime}(x) & =\frac{(1-\cos (x))(1-\sin (x))^{\prime}-(1-\sin (x))(1-\cos (x))^{\prime}}{(1-\cos (x))^{2}} \\
\Rightarrow k^{\prime}(x) & =\frac{(1-\cos (x))(-\cos (x))-(1-\sin (x))(\sin (x))}{(1-\cos (x))^{2}}
\end{aligned}, k^{\prime}(x)=\frac{-\cos (x)+\cos ^{2}(x)-\sin (x)+\sin ^{2}(x)}{(1-\cos (x))^{2}}
$$

$$
\text { (f) } f(x)=e^{5 x+2} \tan (\sqrt{x})
$$

$$
\begin{aligned}
& f^{\prime}(x)=\left(e^{5 x+2}\right)^{\prime}(\tan (\sqrt{x}))+(\tan (\sqrt{x}))^{\prime}\left(e^{5 x+2}\right) \\
\Rightarrow & f^{\prime}(x)=e^{5 x+2} \cdot(5 x+2)^{\prime} \cdot(\tan (\sqrt{x}))+\sec ^{2}(\sqrt{x}) \cdot(\sqrt{x})^{\prime} \cdot\left(e^{5 x+2}\right) \\
\Rightarrow & f^{\prime}(x)=5 e^{5 x+2} \tan (\sqrt{x})+\sec ^{2}(\sqrt{x}) \cdot\left(\frac{1}{2 \sqrt{x}}\right) \cdot e^{5 x+2}
\end{aligned}
$$

(g) $g(x)=\left(2 x^{40}+13 x^{3}+\sqrt[3]{x}-5\right)^{20}$

$$
\begin{aligned}
g^{\prime}(x) & =20\left(2 x^{40}+13 x^{3}+\sqrt[3]{x}-5\right)^{19} \cdot\left(2 x^{40}+13 x^{3}+\frac{3}{x}-5\right)^{\prime} \\
\Rightarrow g^{\prime}(x) & =20\left(2 x^{40}+13 x^{3}+\sqrt[3]{x}-5\right)^{19} \cdot\left(80 x^{39}+39 x^{2}+\frac{1}{3} x^{-2 / 3}\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { (h) } h(x)=\cos (5 \sin (x)) \\
h^{\prime}(x)=-\sin (5 \sin (x)) \cdot(5 \sin (x))^{\prime} \\
\Rightarrow \quad h^{\prime}(x)=-\sin (5 \sin (x)) \cdot 5 \cos (x) \\
\Rightarrow \quad h^{\prime}(x)=-5 \cos (x) \sin (5 \sin (x))
\end{aligned}
$$

$$
\begin{aligned}
\text { (i) } k(x) & =\sqrt[5]{x^{3}+\sin \left(2 x^{5}-3\right)} \\
k^{\prime}(x) & =\frac{1}{5}\left(x^{3}+\sin \left(2 x^{5}-3\right)\right)^{-4 / 5} \cdot\left(x^{3}+\sin \left(2 x^{5}-3\right)\right)^{\prime} \\
\Rightarrow k^{\prime}(x) & =\frac{1}{5}\left(x^{3}+\sin \left(2 x^{5}-3\right)\right)^{-4 / 5} \cdot\left(3 x^{2}+\cos \left(2 x^{5}-3\right) \cdot\left(2 x^{5}-3\right)^{\prime}\right) \\
\Rightarrow k^{\prime}(x) & =\frac{3 x^{2}+10 x^{4} \cos \left(2 x^{5}-3\right)}{5\left(x^{3}+\sin \left(2 x^{5}-3\right)\right)^{1 / 5}}
\end{aligned}
$$

3. In each problem below, find the equation of the tangent line to the curve at the given point. For each problem, submit a Desmos graph that shows the function and the tangent line on the same plot.
(a) Consider $f(x)=\frac{2 x^{2}}{3 x-1}$ at the point $(1, f(1))$.

Derwative Function:

$$
\text { - } f^{\prime}(x)=\frac{(3 x-1)\left(2 x^{2}\right)^{\prime}-\left(2 x^{2}\right)(3 x-1)^{\prime}}{(3 x-1)^{2}}=\frac{(3 x-1)(4 x)-\left(2 x^{2}\right)(3)}{(3 x-1)^{2}}=\frac{6 x^{2}-4 x}{(3 x-1)^{2}}=\frac{2 x(3 x-2)}{(3 x-1)^{2}}
$$

Equation of Tangent Live:

$$
\begin{array}{ll}
\cdot C=1 \\
\cdot f(c)=f(1)=\frac{2(1)^{2}}{3(1)-1}=\frac{2}{3-1}=\frac{2}{2}=1 \\
- & y-f(1)=f^{\prime}(1)(x-1) \\
f^{\prime}(c)=f^{\prime}(1)=\frac{2(1) / 3(1)-2)}{(3(1)-1)^{2}}=\frac{2(1)(1)}{2^{2}}=\frac{2}{4}=\frac{1}{2} & y-1=\frac{1}{2}(x-1) \\
& y-1=\frac{1}{2} x-\frac{1}{2} \\
& y=\frac{1}{2} x+\frac{1}{2}
\end{array}
$$

(b) Consider $f(x)=2 \csc (x)-\sin (x)$ at the point $\left(\frac{\pi}{2}, f\left(\frac{\pi}{2}\right)\right)$.

Derwative Function:

$$
\text { - } f^{\prime}(x)=-2 \csc (x) \cot (x)-\cos (x)
$$

Equation of Tangent Live:

$$
\begin{aligned}
& \text { } C=\pi / 2 \\
& \text { - f(c) })=f(\pi / 2)=2 \csc (\pi / 2)-\sin (\pi / 2)=2\left(\frac{1}{\sin (\pi / 2)}\right)-\sin (\pi / 2)=2\left(\frac{1}{1}\right)-1=2-1=1 \\
& \left(f^{\prime}(c)=f^{\prime}(\pi / 2)=-2 \csc (\pi / 2) \cot (\pi / 2)-\cos (\pi / 2)=-2\left(\frac{1}{\sin (\pi / 2)}\right)\right)\left(\frac{\cos (\pi / 2)}{\sin (/ 2)}\right)-\cos (\pi / 2)=-2\left(\frac{1}{1}\right)\left(\frac{0}{1}\right)-0=0 \\
& y-f(\pi / 2)=f^{\prime}(\pi / 2)(x-\pi / 2) \\
& \Rightarrow y-1=0(x-\pi / 2) \\
& \Rightarrow y=1
\end{aligned}
$$

4. Consider the function $f(x)=\frac{x}{2 x-1}$ and the point $(-7,1)$. This point does not lie on the graph of $y=f(x)$. Suppose $(c, f(c))$ is a point on the graph of $y=f(x)$ such that the tangent line to f at c goes through the point $(-7,1)$. Show that two possible values for c exist and find them.

The slope of the Th at $(c, f(c))$, which we know is $f^{\prime}(c)$, must be equal to the slope of the live connecting the points $(c, f(c))$ and $(-7,1)$, which we know is $\frac{1-f(c)}{-7-c}$. Therefore,

$$
f^{\prime}(x)=\frac{(2 x-1)(x)^{\prime}-(x)(2 x-1)^{\prime}}{(2 x-1)^{2}}=\frac{(2 x-1)(1)-x(2)}{(2 x-1)^{2}}=\frac{-1}{(2 x-1)^{2}}
$$

Setting the slopes equal to each other at ($c, f(c)$) gives:

$$
\begin{array}{ll}
& f^{\prime}(c)=\frac{1-f(c)}{-7-c} \\
\Rightarrow & f^{\prime}(c)(-7-c)=1-f(c) \\
\Rightarrow & \frac{-1}{(2 c-1)^{2}}(-7-c)=1-\frac{c}{2 c-1} \\
\Rightarrow & (2 c-1)^{2}\left(\frac{-1}{(2 c-1)^{2}}(-7-c)\right)=\left(1-\frac{c}{2 c-1}\right)(2 c-1)^{2} \\
\Rightarrow & 7+c=(2 c-1)^{2}-c(2 c-1) \\
\Rightarrow & 7+c=4 c^{2}-4 c+1-2 c^{2}+c \\
\Rightarrow & 2 c^{2}-4 c-6=0 \\
\Rightarrow & 2\left(c^{2}-2 c-3\right)=0 \\
\Rightarrow & 2(c-3)(c+1)=0 \\
\Rightarrow & c-3=0 \\
\Rightarrow & c=1=0 \\
\Rightarrow & c=-1
\end{array}
$$

5. Application Problem: The position function for damped harmonic motion of an object of mass m is

$$
y(t)=A e^{-\frac{k}{2 m} t} \cos (\omega t)
$$

where A is the amplitude, and k and ω are constants specific to the motion. Find the velocity and acceleration functions for this motion.
Position: $y(t)=A e^{-\frac{k}{2 m} t} \cos (\omega t)$
Velocity: $v(t)=y^{\prime}(t)$

$$
=\left(A e^{-\frac{12}{2 n} t} \cos (\cos t)\right)^{\prime}
$$

$$
=\left(A e^{-\frac{k}{2 m} t}\right)^{\prime}(\cos (\omega t))+\left(A e^{-\frac{2 k}{m} t}\right)(\cos (\omega t))^{\prime}
$$

$$
=A\left(-\frac{k}{2 m}\right) e^{-\frac{k}{2 m} t} \cos (\omega t)+A e^{-\frac{2 k}{m} t}(-\sin (\omega t)) \cdot \omega
$$

$$
=-\frac{A k}{2 m} e^{-\frac{k}{2 m} t} \cos (\omega t)-A_{\omega} e^{-\frac{2 h}{m} t} \sin (\omega t)
$$

$$
V(t)=-A e^{-\frac{k}{2 m} t}\left(\frac{k}{2 m} \cos (\omega t)+\omega \sin (\omega t)\right)
$$

Acceleration: $a(t)=y^{\prime \prime}(t)$

$$
\begin{aligned}
& =v^{\prime}(t) \\
& =\left(-A e^{-\frac{k}{2 m} t}\left(\frac{k}{2 m} \cos (\omega t)+\omega \sin (\omega t)\right)\right)^{\prime} \\
& =\left(-A e^{-\frac{k}{2 m} t}\right)^{\prime}\left(\frac{k}{2 m} \cos (\omega t)+\omega \sin (\omega t)\right)+\left(-A e^{-\frac{k}{2 \omega t} t}\right)\left(\frac{k}{2 m} \cos (\omega t)+\omega \sin (\omega t)\right)^{\prime} \\
& =\frac{A k}{2 m} e^{-\frac{k}{2 m} t}\left(\frac{k}{2 m} \cos (\omega t)+\omega \sin (\omega t)\right)+\left(-A e^{-\frac{k}{2 m} t}\right)\left(-\frac{h \omega}{2 m} \sin (\omega t)+\omega^{2} \cos (\omega t)\right) \\
& =A e^{-\frac{k}{2 m} t}\left(\frac{k^{2}}{4 m^{2}} \cos (\omega t)+\frac{k \omega}{2 m} \sin (\omega t)+\frac{h \omega}{2 m} \sin (\omega t)-\omega^{2} \cos (\omega t)\right) \\
a(t) & =A e^{-\frac{k k}{m} t}\left[\left(\frac{k^{2}}{4 m^{2}}-\omega^{2}\right) \cos (\omega t)+\frac{k \omega}{m} \sin (\omega t)\right]
\end{aligned}
$$

