Name:

Instructions: All solutions should be prepared carefully and neatly. All solution sets shall be completed on this packet and submitted by uploading a scan or picture of your written work to D2L by 11:59 PM on the due date below. Submit only a single pdf file of your entire packet. Desmos graphs can be submitted separately. The mobile app called Genius Scan works well. Use a PENCIL and if you make a mistake, use an eraser. This assignment is graded on effort, completeness, and neatness for a total of 5 points. Careless presentation (e.g. bad handwriting, pen scribbles, doodles, wasted space, etc) will result in a deduction of points at my discretion. Submitted work that does not demonstrate clearly the process by which one arrived at the answer may result in a loss of points. Any parts to any questions that are not answered will also result in a loss of points. Academic dishonesty will not be tolerated.

Problem Set IV

MAT 181-050 - Calculus I
Due: Monday, March 4 by 11:59 PM on D2L
Read: Sections 3.2, 3.3, and 3.4

1. Using the appropriate rules of differentiation, find the derivative of the following functions:
(a) $f(x)=1$
(b) $u(x)=\pi^{3}+12$
(c) $g(t)=t^{42070}$
(d) $p(t)=42070^{t}$
(e) $y(w)=4 w^{6}+14 \sqrt{w}-2^{w}$, where $w \geq 0$.
(f) $q(s)=\frac{s^{5}-2 s^{2}}{s^{2}}$, where $s \neq 0$.
(g) $F(x)=\frac{e^{x}}{3}-11 x^{3}$
(h) $h(t)=\left(t-t^{3}\right)\left(t^{2}-1\right)$
2. (This problem spans two pages.) Differentiate the following functions and simplify the expression as much as possible:
(a) $f(x)=2^{x} \sqrt{x}$
(b) $g(x)=\frac{100 x}{x-1}$
(c) $h(x)=\frac{\sqrt{x}+x}{\sqrt{x}-x}$
(d) $k(x)=\frac{2 x+1}{x^{3} e^{x}}$
(e) $k(x)=\frac{1-\sin (x)}{1-\cos (x)}$
(f) $f(x)=e^{5 x+2} \tan (\sqrt{x})$
(g) $g(x)=\left(2 x^{40}+13 x^{3}+\sqrt[3]{x}-5\right)^{20}$
(h) $h(x)=\cos (5 \sin (x))$
(i) $k(x)=\sqrt[5]{x^{3}+\sin \left(2 x^{5}-3\right)}$
3. In each problem below, find the equation of the tangent line to the curve at the given point. For each problem, submit a Desmos graph that shows the function and the tangent line on the same plot.
(a) Consider $f(x)=\frac{2 x^{2}}{3 x-1}$ at the point $(1, f(1))$.
(b) Consider $f(x)=2 \csc (x)-\sin (x)$ at the point $\left(\frac{\pi}{2}, f\left(\frac{\pi}{2}\right)\right)$.
4. Consider the function $f(x)=\frac{x}{2 x-1}$ and the point $(-7,1)$. This point does not lie on the graph of $y=f(x)$. Suppose $(c, f(c))$ is a point on the graph of $y=f(x)$ such that the tangent line to f at c goes through the point $(-7,1)$. Show that two possible values for c exist and find them.
5. Application Problem: The position function for damped harmonic motion of an object of mass m is

$$
y(t)=A e^{-\frac{k}{2 m} t} \cos (\omega t)
$$

where A is the amplitude, and k and ω are constants specific to the motion. Find the velocity and acceleration functions for this motion.

