Name:

Instructions: All solutions should be prepared carefully and neatly. All solution sets shall be completed on this packet and submitted by uploading a scan or picture of your written work to D2L by 11:59 PM on the due date below. Submit only a single pdf file of your entire packet. Desmos graphs can be submitted separately. The mobile app called Genius Scan works well. Use a PENCIL and if you make a mistake, use an eraser. This assignment is graded on effort, completeness, and neatness for a total of 5 points. Careless presentation (e.g. bad handwriting, pen scribbles, doodles, wasted space, etc) will result in a deduction of points at my discretion. Submitted work that does not demonstrate clearly the process by which one arrived at the answer may result in a loss of points. Any parts to any questions that are not answered will also result in a loss of points. Academic dishonesty will not be tolerated.

Problem Set III
 MAT 181 - Calculus I

Due: Friday, February 23 by 11:59 PM on D2L
Read: Sections 2.1, 2.5, 2.6, and 3.1

1. Consider the following piecewise function below. Determine if the function is continuous at $x=0$ and $x=4$ by computing, explicitly, all necessary limits. (Note: you are not allowed to compute limits graphically.) If it is not continuous at a point, determine if it is left- or right-continuous or neither. Show all work to receive full credit.

$$
f(x)= \begin{cases}\frac{\sin (x)}{x} & \text { if } x<0 \\ \frac{x^{3}-x^{2}-12 x}{x^{2}-3 x-4} & \text { if } 0 \leq x<4 \\ \sqrt{x}+\frac{18}{5} & \text { if } x \geq 4\end{cases}
$$

2. Suppose that a sailboat is observed, over a period of 5 minutes, to travel a distance from a starting point according to the function $s(t)=t^{3}+60 t$, where t is time in minutes and s is the distance traveled in meters.
(a) What is the average velocity of the boat between 1 and 3 minutes?
(b) What is the average velocity of the boat between 3 and 5 minutes?
(c) Fill out the tables below and be sure not to round too much.

Time interval	[3, 3.5]	[3, 3.1]	[3, 3.01]	[3, 3.001]
Change in time (Δt)				
Change in distance (Δs)				
Average velocity $\left(\frac{\Delta s}{\Delta t}\right)$				
Time interval	[2.5, 3]	[2.9, 3]	[2.99, 3]	[2.999, 3]
Change in time (Δt)				
Change in distance (Δs)				
Average velocity $\left(\frac{\Delta s}{\Delta t}\right)$				

(d) Using your tables above, make a conjecture about the instantaneous velocity of the boat at 3 minutes into its trip.
3. (This problem spans two pages.) The following questions pertain to the limit definition of the derivative either at a single point c or the derivative function. In each question below, you must use the specified limit definition to compute the derivative to receive full credit.
(a) Using the limit definition of the derivative at a point c, namely $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$, compute the derivative of $f(x)=2 x^{2}+x$ at $c=1$.
(b) Using the limit definition of the derivative at a point c, namely $f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$, compute the derivative of $f(x)=\sqrt{2 x}$ at $c=2$.
(c) Using the limit definition of the derivative function, namely $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$, compute the derivative function of the functions below. Specify, in interval notation, where f is continuous and where f is differentiable.
i. $f(x)=\sqrt{3-x}$
ii. $f(x)=-\frac{5}{x^{2}}$
4. Consider the piecewise function $f(x)$ given below with its graph. Answer parts $(a)-(d)$ simply by looking at the graph.

$$
f(x)= \begin{cases}-\frac{1}{2} x+\frac{5}{2} & \text { if } x \leq 1 \\ -x^{2}+6 x-3 & \text { if } x>1\end{cases}
$$

(a) $f(-1)=$
(b) $f^{\prime}(-1)=$
(c) $f(3)=$
(d) $f^{\prime}(3)=$
(e) Notice from the graph that $f(x)$ is continuous at $x=1$. Show that $f(x)$ is not differentiable $x=1$ by explicitly computing the left- and right-side limits of the derivative.
5. Application Problem: The owner of a small toy manufacturer has determined that he can sell x toys if the price is $D(x)=0.2 x+30$ dollars. The total cost as a function of x is given by $C(x)=0.1 x^{2}+15 x+247.5$ dollars. (Hint: to do this problem, you might have to do some light research about price, cost, and profit functions.)
(a) Find any break-even points. (Hint: you have to find the revenue function first.)
(b) Find the profit function, $P(x)$, and submit a Desmos graph of this function. What do the zeros of this function represent?
(c) Compute the marginal profit function using the limit definition of the derivative.

