Instructions: All solutions should be prepared carefully and neatly. All solution sets shall be completed on this packet and submitted by uploading a scan or picture of your written work to D2L by 11:59 PM on the due date below. Submit only a single pdf file of your entire packet. Submit any Excel or Python files as well. The mobile app called Genius Scan works well. Use a PENCIL and if you make a mistake, use an eraser. Careless presentation (e.g. bad handwriting, pen scribbles, doodles, wasted space, etc) will result in a deduction of points at my discretion. Submitted work that does not demonstrate clearly the process by which one arrived at the answer will not receive credit of any kind. Academic dishonesty will not be tolerated.

Problem Set I
 MAT 362-010 - Operations Research II

Due: Friday, February 16 by 11:59 PM on D2L
Read: Sections 4.14, 6.5-6.7

Problem Number	Available Points	Your Points
1	5	5
2	3	3
3	3	3
4	3	3
5	5	5
6	4	$\mathbf{4}$
7	4	$\mathbf{4}$
Total	27	27

1. A company is planning the manufacture of a product for March, April, May, and June of next year. The demand quantities are $520,720,520$, and 620 units, respectively. The company has a steady workforce of 10 employees but can meet fluctuating production needs by hiring and firing temporary workers. The extra costs of hiring and firing a temp in any month are $\$ 200$ and $\$ 400$, respectively. A permanent worker produces 12 units per month, and a temporary worker, lacking equal experience, produces 10 units per month. The company can produce more than needed in any month and carry over the surplus to a succeeding month at a holding cost of $\$ 50$ per unit per month. Develop an optimal hiring/firing policy over the 4-month planning horizon. Formulate the LP in the space below and find a solution using the Excel Solver. Submit the Excel program and report the solution below.

Decision vanables: for all varuibles, $t=1,2,3,4$.
$X_{t}=$ Net number of tempos of the start of month t after hiring and firing takes place. $x_{t} \geq 0$
$S_{t}=$ Number of temps hired or for ed at start of worth t (S_{t} uss)

$$
=h_{t}-f_{t} \text { (h otis the } \# \text { hired, } f_{t} \text { is the } \# \text { ford) } h_{t}, f_{t} \geq 0
$$

$i_{t}=$ units $\&$ ending inventory for month t, is ≥ 0
Obj. Fun: Minimize total cost

$$
z=50\left(i_{1}+i_{2}+i_{3}\right)+200\left(h_{1}+h_{2}+h_{3}+h_{4}\right)+400\left(f_{1}+f_{2}+f_{3}+f_{4}\right)
$$

Constraints: Here is ahongs 10 permanent employees, thus the deurace for each mouth is reduced by 120.

$$
\begin{aligned}
& i_{1}=10 x_{1}-400 \\
& i_{2}=10 x_{2}-600+i_{1}
\end{aligned}
$$

(Evertor)

$$
\begin{aligned}
& i_{3}=10 x_{3}-400+i_{2} \\
& i_{4}=10 x_{4}-500+i_{3} \\
& i_{4}=0
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=h_{1}-f_{1} \\
& x_{2}=x_{1}+h_{2}-f_{2} \\
& x_{3}=x_{2}+h_{3}-f_{3} \\
& x_{4}=x_{3}+h_{4}-f_{4}
\end{aligned}
$$

$$
\text { (Mire/fire) } \begin{aligned}
& x_{2}=x_{1}+h_{2}-f_{2} \\
& x_{3}=x_{2}+h_{3}-f_{3}
\end{aligned}
$$

All vawaibles ≥ 0
Solution from Excel: $x_{1}=50, x_{2}=50, x_{3}=45, x_{4}=45$,

$$
\begin{aligned}
& i_{1}=100, i_{2}=0, i_{3}=50, \\
& h_{1}=50, f_{3}=5 \text {, the rest are } 0 .
\end{aligned}
$$

2. Find the dual of the following LP:

Minimize: $\quad z=15 x_{1}+12 x_{2}$

Subject to:

$$
\begin{aligned}
x_{1}+2 x_{2} & \geq 3 \\
2 x_{1}-4 x_{2} & \leq 5 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Rewrite in equation form:

$$
\text { Minimize } z=15 x_{1}+12 x_{2}
$$

Subject to

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =3 \\
2 x_{1}-4 x_{2}+x_{4} & =5 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Dual Constraints

$$
\begin{aligned}
& y_{1}+2 y_{2} \leq 15 \\
& 2 y_{1}-4 y_{2} \leq 12 \\
&-y_{1} \leq 0 \\
& y_{2} \quad \leq 0 \\
& y_{1}, y_{2} \text { uss }
\end{aligned}
$$

Duel LP:

$$
\begin{array}{lc}
\text { Maximize } & w=3 y_{1}+5 y_{2} \\
\text { Subject to } & y_{1}+2 y_{2} \leq 15 \\
& 2 y_{1}-4 y_{2} \leq 12 \\
& y_{1} \geq 0, y_{2} \leq 0
\end{array}
$$

3. Find the dual of the following LP:

Minimize: $\quad z=6 x_{1}+3 x_{2}$

Subject to: $\quad 6 x_{1}-3 x_{2}+x_{3} \geq 2$

$$
3 x_{1}+4 x_{2}+x_{3} \geq 5
$$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

This is a normal minimization $L P$. Thus, the Duad LP is a normal maximation $L P$.

4. Find the dual of the following LP:

Maximize: $\quad z=5 x_{1}+6 x_{2}$

$$
\begin{aligned}
\text { Subject to: } x_{1}+2 x_{2} & =5 \\
-x_{1}+5 x_{2} & \geq 3 \\
4 x_{1}+7 x_{2} & \leq 8 \\
x_{1} \text { unrestricted, } x_{2} & \geq 0
\end{aligned}
$$

Rewrite in equation form:
maximize $z=5 x_{1}^{+}-5 x_{1}^{-}+6 x_{2}$
Subject to

$$
\begin{aligned}
x_{1}^{+}-x_{1}^{-}+2 x_{2} & =5 \\
-x_{1}^{+}+x_{1}^{-}+5 x_{2}-x_{3} & =3 \\
4 x_{1}^{+}-4 x_{1}^{-}+7 x_{2}+x_{4} & =8 \\
x_{1}^{+}, x_{1}^{-}, x_{2} & \geq 0
\end{aligned}
$$

Dual Captain 3 :

Dun LP:
Minimize $\omega=5 y_{1}+3 y_{2}+8 y_{3}$
Subject to

$$
\begin{aligned}
y_{1}-y_{2}+4 y_{3} & =5 \\
2 y_{1}+5 y_{2}+7 y_{3} & =6 \\
y_{1} \text { uss, } y_{2} & =0, y_{3}
\end{aligned}
$$

5. An auto company manufactures cars and trucks. Each vehicle must be processed in the paint shop and body assembly shop. If the paint shop were only painting trucks, then 40 per day could be painted. If the paint shop were only painting cars, then 60 per day could be painted. If the body shop were only producing cars, then it could process 50 per day. If the body shop were only producing trucks, it could process 50 trucks per day. Each truck contributes $\$ 300$ to profit, and each car contributes $\$ 200$ to profit. The auto company need not only manufacture a single type of automobile in a single day. Formulate an LP that determines the appropriate mixture of automobile type that will maximize profits for a single day. Then, formulate the dual problem and give an interpretation of the decision variables, constraints, and objective function of the dual problem.

Primal LP:

$$
\begin{aligned}
& x_{1}=\# \text { ot cars manufactured } \\
& x_{2}=\# \text { of tondes manufactured }
\end{aligned}
$$

$$
M_{\text {aximize }} z=200 x_{1}+300 x_{2}
$$

Subject to

$$
\begin{aligned}
& \text { (eainilios) } \frac{1}{60} x_{1}+\frac{1}{40} x_{2} \leq 1 \\
& \text { (assembles) } \frac{1}{50} x_{1}+\frac{1}{50} x_{2} \leq 1
\end{aligned}
$$

*

Constant 1 is the painting constraint. Constraint 2 is the body so castrainst.

Dual LD.

Maximize $\omega=y_{1}+y_{2}$
Subject to $\frac{1}{60} y_{1}+\frac{1}{50} y_{2} \geq 200$

$$
\frac{1}{40} y_{1}+\frac{1}{50} y_{2} \geq 300
$$

Cambers 1: btl worth of processing a surge car in a day
Contasint 2: total worth of processing a single truck in a day.
Off Fan: minimize the bol cost associated to printryon of assembly a suite verite per day
6. Consider the Giapetto's Workshop problem in the text (Section 3.1, Example 1). The LP is below along with the optimal tableau.

Row	Basic	z	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	RHS
0	z	1	0	0	1	1	0	180
1	x_{1}	0	1	0	1	-1	0	20
2	x_{2}	0	0	1	-1	2	0	60
3	s_{3}	0	0	0	-1	1	1	20

Find the dual of the Giapetto problem. Use the optimal tableau of the Giapetto problem to determine the optimal solution of the dual problem. Verify that the Dual Theorem holds in this instance by showing the optimal solution to the dual is $\boldsymbol{c}_{B V} B^{-1}$ and $z_{o p t}=w_{o p t}$.
Dual LP:

$$
\begin{aligned}
\text { Minimize } w=10 y_{1}+80 y_{2} & +40 y_{3} \\
\text { Subject to } \quad 2 y_{1}+y_{2}+y_{3} & \geq 3 \\
y_{1}+y_{2} & \geq 2 \\
y_{1}, y_{2}, y_{3} & \geq 0
\end{aligned} \quad y_{1}=1, y_{2}=1, y_{3}=0
$$

Verify Dual Theorem:

$$
\vec{y}={\overrightarrow{c_{3 v}}}^{\top} \vec{B}^{-1}=\left[\begin{array}{lll}
3 & 2 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & 0 \\
-1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& z_{\text {opt }}=180 \\
& w_{\text {opt }}=100(1)+80(1)+40(0)=180
\end{aligned}
$$

$$
\alpha
$$

$$
\begin{aligned}
& \text { Maximize: } \quad z=3 x_{1}+2 x_{2} \\
& \text { Subject to: } 2 x_{1}+x_{2} \leq 100 \\
& x_{1}+x_{2} \leq 80 \\
& x_{1} \leq 40 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

7. Consider the Bevco problem in the text (Section 4.12, Example 4). The LP is below. The optimal tableau, found via the $\operatorname{Big} M$ Method is given below as well.

Minimize: $\quad z=2 x_{1}+3 x_{2}$
Subject to: $\quad \frac{1}{2} x_{1}+\frac{1}{4} x_{2} \leq 4$

$$
\begin{aligned}
x_{1}+3 x_{2} & \geq 20 \\
x_{1}+x_{2} & =10 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Row	Basic	z	x_{1}	x_{2}	s_{1}	e_{2}	a_{2}	a_{3}	RHS
0	z	1	0	0	0	$-\frac{1}{2}$	$\frac{1-2 M}{2}$	$\frac{3-2 M}{2}$	25
1	s_{1}	0	0	0	1	$-\frac{1}{8}$	$\frac{1}{8}$	$-\frac{5}{8}$	$\frac{1}{4}$
2	x_{2}	0	0	1	0	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	5
3	x_{1}	0	1	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{3}{2}$	5

Find the dual of the Bevco problem. Use the optimal tableau of the Bevco problem to determine the optimal solution of the dual problem. Verify that the Dual Theorem holds in this instance by showing the optimal solution to the dual is $\boldsymbol{c}_{B V} B^{-1}$ and $z_{o p t}=w_{o p t}$.

$$
\begin{aligned}
& \text { Maximize } \omega=4 y_{1}+20 y_{2}+10 y_{3} \\
& \text { Suldject to } \frac{1}{2} y_{1}+y_{2}+y_{3} \leq 2 \\
& \frac{1}{4} y_{1}+3 y_{2}+y_{3} \leq 3 \\
& y_{1} \leq 0, y_{2} \geq 0, y_{3} \text { uss }
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}=0 \\
& y_{2}=-\left(-\frac{1}{2}\right)=\frac{1}{2} \\
& y_{3}=\frac{3-2 m}{2}+m=\frac{3}{2}
\end{aligned}
$$

Vorrfy Duel Dearcm:

$$
\vec{y}=\vec{c}_{b}^{\top} 10^{-1}=\left[\begin{array}{lll}
0 & 3 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 / 8 & -5 / 8 \\
0 & 1 / 2 & -1 / 2 \\
0 & -1 / 2 & 3 / 2
\end{array}\right]=\left[\begin{array}{lll}
0 & \frac{1}{2} & 3
\end{array}\right] d
$$

$$
Z_{\text {opt }}=25
$$

$$
w_{\text {opt }}=4(0)+20\left(\frac{1}{2}\right)+10\left(\frac{3}{2}\right)=10+15=25
$$

