By signing below, you attest that you have neither given nor received help of any kind on this exam.
Signature:

Printed Name: Brookes Emerich
Instructions: Show work to get full credit (the correct answer may NOT be enough). Do all your work on the paper provided. Write clearly! Double check your answers!

You will not receive full credit for using methods other than those discussed in class.

Calculators are not permitted.

Exam III
 MAT 181 - Calculus I

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Solutions!

Problem Number	Available Points	Your Points
1	6	6
2	8	8
3	7	7
4	6	$\mathbf{6}$
5	6	$\mathbf{6}$
Total	33	$\mathbf{3 3}$

1. For the following questions, let $f(x)=\frac{1}{2} x^{3}-2 x^{2}$.
(a) Find the values on the interval $[-2,2]$ on which the function f attains its absolute minimum value and its absolute maximum value.

$$
\begin{array}{r}
f^{\prime}(x)=\frac{3}{2} x^{2}-4 x=0 \\
x\left(\frac{3}{2} x-4\right)=0 \\
x=0 \quad \begin{array}{r}
3 \\
2 \\
x-4
\end{array}=0 \\
\frac{3}{2} x=4 \\
\sqrt{x}=\frac{8}{3} \text {-aitside invar } \\
\text { Critrizi pts: } C=0
\end{array}
$$

Closed interval method:

$$
\begin{aligned}
& f(-2)=\frac{1}{2}(-2)^{3}-2(-2)^{2}=-4-8=-12 \\
& f(0)=\frac{1}{2}(0)^{3}-2(0)^{2}=0 \\
& f(2)=\frac{1}{2}(2)^{3}-2(2)^{2}=4-8=-4
\end{aligned}
$$

All os mace at $x=0$
Abs min at $x=-2$
(b) Does f satisfy the hypotheses of Rolle's Theorem on the interval $[-2,2]$? If yes, justify each part of the theorem. If no, explicitly state which parts) of the hypothesis is not met. If it does satisfy the hypothesis, determine the value c that is guaranteed to exist.
d(1) $f(x)=\frac{1}{2} x^{3}-2 x^{2}$ is a plynamemil so it is cont. on $[-2,2]$

$$
\begin{aligned}
& \text { ce) } f^{\prime}(x)=\frac{3}{2} x^{2}-2 x \text { is a polynomial so } f(x) \text { is dofferentrable } \\
& \text { an }(-2,2)
\end{aligned}
$$

\& 3.) $f(-2)=-12>$ not Equal
f does not satisfy the hypothesis of Rolles' Thun.
2. Suppose that $f(x)$ is a continuous function everywhere, and the FIRST DERIVATIVE of $f(x)$ is given by

$$
f^{\prime}(x)=\frac{x^{2}-3 x-4}{x^{1 / 3}}
$$

(a) Find all the critical points of f.

$$
\begin{array}{lll}
\frac{f^{\prime}(x)=0:}{} & f^{\prime}(x)=0 N E: & \frac{\text { criminal pts: }}{x^{2}-3 x-4=0} \\
(x-4)(x+1)=0 & x^{1 / 3}=0 & x=0
\end{array}
$$

(b) Conduct a sign analysis on the number line below to find the intervals of monotonicity of $f(x)$. Your final answers should be in interval notation.

$$
\begin{array}{lll}
f^{\prime}(x)=\frac{(x+1)(x-4)}{x^{1 / 3}} & & \text { Summary } \\
f^{\prime}(-2)=\frac{(-)(-)<0}{(-)}<0 & f^{\prime}(1)=\frac{(+1) /-)}{(+)}<0 & \text { - Inc on }(-1,0) \cup(4, \infty) \\
f^{\prime}\left(-\frac{1}{2}\right)=\frac{(+1(-)}{(-)}>0 & f^{\prime}(5)=\frac{(+1 x+1)}{(+)}>0 &
\end{array}
$$

(c) Using the first derivative test, determine the x-values that correspond to local extrema of $f(x)$, and indicate whether the point corresponds to a local min or local max.

$$
\begin{aligned}
& \text { - Local max at } x=0 \\
& \text { - Local min at } x=-1 \text { and } x=4 \text {. }
\end{aligned}
$$

3. Consider the function $f(x)=x^{3}-\frac{3}{2} x^{2}-36 x$.
(a) Find all critical points and candidate inflection points of this function.

Crituzal Pts:
Caudrint seftration P3.

$$
\begin{array}{r}
f^{\prime}(x)=3 x^{2}-3 x-36=0 \\
3\left(x^{2}-x-12\right)=0 \\
3(x-4)(x+3)=0 \\
c_{1}=-3, c_{2}=4
\end{array}
$$

$$
f^{\prime \prime}(x)=6 x-3=0
$$

(b) Determine the location of all local maxima and minima of this function using the second derivative test.

$$
\begin{aligned}
& f^{\prime \prime}(x)=6 x-3 \\
& \text { - } f^{\prime \prime}(-3)=6(-3)-3=-18-3=-21<0 \\
& \text { - } f^{\prime \prime}(4)=6(4)-3=24-3=21>0 \text { local aux at } x-3 \\
& 4
\end{aligned}
$$

(c) Determine the intervals of concavity for $f(x)$ by conducting a sign analysis on the number line below. Your final answers should be in interval notation.

$$
\begin{aligned}
& f^{\prime \prime}(x)=6 x-3 \\
& \text { unman: } \\
& \text { - Concur up on }\left(\frac{1}{2}, \infty\right) \\
& \text { - Concave down on }\left(-\infty, \frac{1}{2}\right) \\
& f^{\prime}(4)=21>0
\end{aligned}
$$

4. Compute the following limits. If you use L'Hôpital's Rule, state the indeterminate form.
(a) $\lim _{x \rightarrow 0} \frac{3-2^{x}}{2 x+3}$

$$
\lim _{x \rightarrow 0} \frac{3-2^{x}}{2 x+3}=\frac{3-2^{\circ}}{2(0)+3}=\frac{3-1}{0+3}=\frac{2}{3}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{e^{3 x-6}-1}{x^{2}-4}\left[=\frac{e^{6-6}-1}{\lim _{x \rightarrow 2} \frac{e^{3 x-6}-1}{x^{2}-4}}=\frac{e^{0}-1}{4-4}=\frac{0}{0}\right] \\
& L^{\prime} 4 \\
& L \lim _{x \rightarrow 2} \frac{3 e^{3 x-6}-0}{2 x}=\frac{3 e^{3(21-6}}{2(2)}=\frac{3 e^{0}}{4}=\frac{3}{4}
\end{aligned}
$$

(c) $\lim _{x \rightarrow 0^{+}} x^{2} \csc (2 x)$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{x^{2}}{\sin (2 x)}\left[=\frac{0}{6}\right] \\
& L^{\prime}(1) \lim _{x \rightarrow 0^{+}} \frac{2 x}{2 \cos (2 x)}=\frac{2(0)}{2 \cos (0)}=\frac{0}{2(1)}=\frac{0}{2}=0
\end{aligned}
$$

5. Farmer Kenny wants to build a rectangular pen against his barn. He decided that he does not need fencing along the barn, but does want the pen to be divided into two equal rectangular sections by one interior fence that runs perpendicular to the barn. Each section should have an area of 24 square meters. What is the minimum amount of fencing required and what are the dimensions of the optimal pen? Be sure to justify your answer using the second derivative test.

Aerial View

$$
F=3 x+2 y
$$

Constaciont: $x y=24$

