By signing below, you attest that you have neither given nor received help of any kind on this exam.

Printed Name: Brooks Emerick

Instructions: Show work to get full credit (the correct answer may NOT be enough). Do all your work on the paper provided. Write clearly! Double check your answers!

You will not receive full credit for using methods other than those discussed in class.

Calculators are not permitted.

> EXAM II
> MAT 181 - Calculus I
> Solutions!

Problem Number	Available Points	Your Points
1	4	4
2	6	6
3	5	5
4	7	7
5	14	14
Total	36	36

1. Determine if the following function is differentiable at $x=1$:

$$
f(x)= \begin{cases}2 x^{3}+2 & \text { for } x \leq 1 \\ 6 x-1 & \text { for } x>1\end{cases}
$$

You must justify your answer using appropriate limits or appropriate theorems.
Check Continuity:

$$
\begin{aligned}
& \text { - } f(1)=2(1)^{3}+2=4 \\
& \text { - } \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 2 x^{3}+2=2(1)^{3}+2=4 \\
& \text { - } \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 6 x-1=6(1)-1=5
\end{aligned}
$$

Therefore, $f(x)$ is not continuous at $x=1$ clue to the limit not existing. Slice $f(x)$ is nut contusions, it is nut differentiable af $x=1$.
2.
(a) Let $y=f(x)$ be a function and let c be a value in the domain of f. Without using the word "prime," "derivative," or "differentiate," write a single English sentence with appropriate punctuation that interprets what is meant by the symbol $f^{\prime}(c)$.
Answers vary:
1.) $f^{\prime}(s)$ is the slope of the tangent lie to $y=f(x)$ aet the point $(c, f(c))$.
2.) $f^{\prime}(c)$ is the in'stantanesus rate of change of $f(x)$ when $x=C$.
(b) Use the limit definition to compute the derivative function $f^{\prime}(x)$ for $f(x)=x^{3}-2 x+\pi$. Show all work.

$$
\begin{aligned}
\cdot f(x) & =x^{3}-2 x+\pi \\
\cdot f(x+h) & =(x+h)^{3}-2(x+h)+\pi \\
& =x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-2 x-2 h+\pi
\end{aligned}
$$

$$
\text { - } \begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-2 x-2 h+\pi\right)-\left(x^{3}-2 x+\pi\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-2 x-2 h+\pi-x^{3}+2 x-\pi}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 x h^{2}+h^{3}-2 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 x h+h^{2}-2\right)}{h} \\
& =\lim _{h \rightarrow 0} 3 x^{2}+3 x h+h^{2}-2 \\
& =3 x^{2}+3 x(0)+0^{2}-2 \\
& =3 x^{2}+0+0-2 \\
f^{\prime}(x) & =3 x^{2}-2
\end{aligned}
$$

3. Let the graph of $y=f(x)$ be given below.

(a) Evaluate the following derivatives. If it doesn't exist, write DNE.
i. $f^{\prime}(-1.5)=$ \qquad -2 (same slope as line)
ii. $f^{\prime}(-1)=$ DNE (cusp; not differentiable)
iii. $f^{\prime}(0)=0 \quad$ (Slope is horizontal)
iv. $f^{\prime}(1)=$ \qquad (f is not contrivers at $x=1$)
(b) Use the graph of f above to evaluate the following limit:

$$
\begin{aligned}
& \lim _{x \rightarrow-1-} \frac{f(x)-f(-1)}{x+1}=-2 \\
& G \text { slope on Left -Hand side of } x=-1
\end{aligned}
$$

4. Consider the function $f(x)=12 \sqrt{x}-\frac{3}{2} x^{2}-x-2$.
(a) On what interval(s) is this function continuous?

The function is an alyebraic function that is continuous on its domain. The domain is $[0, \infty)$ due to the
square root.
(b) On what interval(s) is this function differentiable?

$$
f^{\prime}(x)=12\left(\frac{1}{2 \sqrt{x}}\right)-\frac{3}{2}(2 x)-1-0
$$

$\Rightarrow f^{\prime}(x)=\frac{6}{\sqrt{x}}-3 x-1 \rightarrow$ contimious on $(0, \infty) \int f(x)$ is diflerecontible on $(0, \infty)$.
(c) Find the average rate of change of this function over the interval $[0,4]$.

$$
\text { [APOC] }=\frac{f(4)-f(0)}{4-0} \quad \begin{align*}
f(4) & =12 \sqrt{4}-\frac{3}{2}(4)^{2}-4- \tag{2}\\
& =\frac{-6-(-2)}{4} \\
& =12(2)-\frac{3}{2}(16)-4-2 \\
& =\frac{-4}{4} \\
& =24-24-6 \\
& =-6 \\
& f(0)
\end{align*}
$$

$$
=-1
$$

(d) Find the equation of the tangent line to $f(x)$ at the point $(4, f(4))$. Your final answer should be in slope-intercept form.
Point: $(4, f(4))=(4,-6)$
Slope: $M=f^{\prime}(4)=-10$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{6}{\sqrt{x}}-3 x-1 \\
\Rightarrow f^{\prime}(4) & =\frac{6}{\sqrt{4}}-3(4)-1 \\
& =\frac{6}{2}-12-1 \\
& =3-12-1 \\
& =-10
\end{aligned}
$$

5. Find the derivative of the functions below using methods discussed in class. You do not have to simplify.

$$
\begin{aligned}
& \text { (a) } f(x)=3^{x}+3^{3}+x^{3} \\
& \boldsymbol{f}^{\prime}(\boldsymbol{x})=\ln (3) \cdot \mathbf{3}^{\boldsymbol{x}}+\mathbf{0}+\mathbf{3 x}^{\mathbf{2}}
\end{aligned}
$$

$$
\begin{align*}
& \text { (b) } f(x)=e^{4 x}+e^{4} \tag{2}\\
& f^{\prime}(\boldsymbol{x})=e^{4 x} \cdot \boldsymbol{y}+0
\end{align*}
$$

$$
\begin{align*}
& \text { (c) } f(x)=x^{1 / 4} \cot (x) \tag{2}\\
& f^{\prime}(x)=\left(x^{1 / 4}\right)^{\prime}(\cot (x))+\left(x^{1 / 4}\right)(\cot (x))^{\prime} \\
& f^{\prime}(x)=\frac{1}{4} x^{-3 / 4} \cot (x)+x^{1 / 4}\left(-\csc ^{2}(x)\right)
\end{align*}
$$

$$
\begin{aligned}
& \text { (d) } f(x)=\frac{5 x}{3}+\sqrt{1-x^{2}} \\
& f^{\prime}(x)=\frac{5}{3}(x)^{\prime}+\frac{1}{2 \sqrt{1-x^{2}}}\left(1-x^{2}\right)^{\prime} \\
& f^{\prime}(x)=\frac{5}{3}+\frac{1}{2 \sqrt{1-x^{2}}} \cdot(-2 x)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (e) } f(x)=\frac{x^{4} \sec (x)}{x^{2}+1} \\
& f^{\prime}(x)=\frac{\left(x^{4} \sec (x)\right)^{\prime}\left(x^{2}+1\right)-\left(x^{4} \sec (x)\right)\left(x^{2}+1\right)^{\prime}}{\left(x^{2}+1\right)^{2}} \\
& f^{\prime}(x)=\frac{\left(4 x^{3} \sec (x)+x^{4} \sec (x) \tan (x)\right)\left(x^{4}+1\right)-2 x\left(4 x^{3} \sec (x)\right)}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (f) } f(x)=\cos ^{3}\left(9 x+\sqrt{3 x^{2}-6}\right)+21 \\
& f^{\prime}(x)=3 \cos ^{2}\left(9 x+\sqrt{3 x^{2}-6}\right) \cdot\left(\cos \left(9 x+\sqrt{3 x^{2}-6}\right)\right)^{\prime}+0 \\
& f^{\prime}(x)=3 \cos ^{2}\left(9 x+\sqrt{3 x^{2}-6}\right) \cdot\left(-\sin \left(9 x+\sqrt{3 x^{2}-6}\right)\right) \cdot\left(9 x+\sqrt{3 x^{2}-6}\right)^{\prime} \\
& f^{\prime}(x)=3 \cos ^{2}\left(9 x+\sqrt{3 x^{2}-6}\right) \cdot\left(-\sin \left(9 x+\sqrt{3 x^{2}-6}\right)\right) \cdot\left(9+\frac{1}{2 \sqrt{3 x^{2}-6}} \cdot(6 x)\right)
\end{aligned}
$$

