By signing below, you attest that you have neither given nor received help of any kind on this exam.

Signature: _____

Printed Name: _

Instructions: Show work to get full credit (the correct answer may NOT be enough). Do all your work on the paper provided. Write clearly! Double check your answers!

You will **not** receive full credit for using methods other than those discussed in class.

Calculators are not permitted.

EXAM II MAT 181 – Calculus I

Problem	Available	Your
Number	Points	Points
1	4	
2	6	
3	5	
4	7	
5	14	
Total	36	

[(4)]

1. Determine if the following function is differentiable at x = 1:

$$f(x) = \begin{cases} 2x^3 + 2 & \text{for } x \le 1\\ 6x - 1 & \text{for } x > 1 \end{cases}$$

You must justify your answer using appropriate limits or appropriate theorems.

2.

[(6)][1]

(a) Let y = f(x) be a function and let c be a value in the domain of f. Without using the word "prime," "derivative," or "differentiate," write a single English sentence with appropriate punctuation that interprets what is meant by the symbol f'(c).

(b) Use the **limit definition** to compute the derivative function f'(x) for $f(x) = x^3 - 2x + \pi$. Show [5] all work.

3. Let the graph of y = f(x) be given below.

(a) Evaluate the following derivatives. If it doesn't exist, write DNE.

- ii. f'(-1) =_____[1]
- iii. f'(0) =_____[1]
- iv. f'(1) =_____[1]
- (b) Use the graph of f above to evaluate the following limit:

$$\lim_{x \to -1^{-}} \frac{f(x) - f(-1)}{x + 1}$$

[1]

[1]

[2]

4. Consider the function $f(x) = 12\sqrt{x} - \frac{3}{2}x^2 - x - 2$.	[(7)]
(a) On what interval(s) is this function continuous?	[1]

(b) On what interval(s) is this function differentiable?

(c) Find the average rate of change of this function over the interval [0, 4].

(d) Find the equation of the tangent line to f(x) at the point (4, f(4)). Your final answer should be in [3]slope-intercept form.

5.	Find the derivative of the functions below using methods discussed in class. You do not have to simplify.	[(14)]
	(a) $f(x) = 3^x + 3^3 + x^3$	[2]

(b)
$$f(x) = e^{4x} + e^4$$
 [2]

(c)
$$f(x) = x^{1/4} \cot(x)$$
 [2]

(d)
$$f(x) = \frac{5x}{3} + \sqrt{1 - x^2}$$
 [2]

(e)
$$f(x) = \frac{x^4 \sec(x)}{x^2 + 1}$$
 [3]

(f)
$$f(x) = \cos^3(9x + \sqrt{3x^2 - 6}) + 21$$

[3]