By signing below, you attest that you have neither given nor received help of any kind on this exam.

Signature: ____

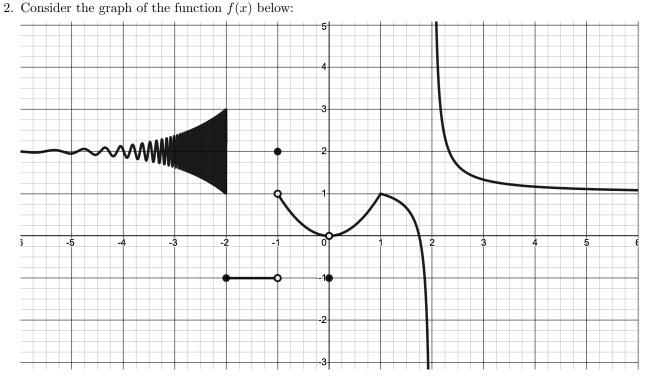
Printed Name: _

Instructions: Show work to get full credit (the correct answer may NOT be enough). Do all your work on the paper provided. Write clearly! Double check your answers!

You will **not** receive full credit for using methods other than those discussed in class.

Calculators are not permitted.

EXAM I MAT 181-050 – Calculus I


Problem	Available	Your
Number	Points	Points
1	8	
2	8	
3	10	
4	10	
5	4	
Total	40	

1. Consider the graph of $f(x) = 2 + \sqrt{2x+4}$ below. [(8)]7 6 5 Δ 3 2 1 -2 0 2 3 4 5 6 -3 ±1 1 2 -3 (a) Is f(x) a polynomial, a rational, an algebraic, or a transcendental function? [1] (b) Compute and simplify the expression $f(\frac{1}{2}x^2)$. [1] (c) What is the domain and range of this function? Use interval notation. [2](d) Find a formula for the inverse function $f^{-1}(x)$ and sketch it on the graph above, labeling **at least** [3] two points on the graph of $y = f^{-1}(x)$.

(e) Compute $f^{-1}(4)$.

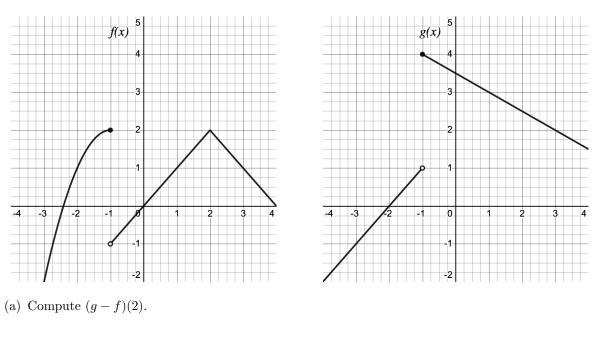
[1]

[(8)]

(a) Use the graph to fill in the entries of the table below. If the limit exists, write the value of the limit. If the limit is infinite, write ∞ or $-\infty$. If the limit does not exist, write DNE. For the last row, write "Yes" or "No."

	c = -2	c = -1	c = 0	c = 1	c = 2
$\lim_{x \to c^-} f(x)$					
$\lim_{x \to c^+} f(x)$					
$\lim_{x \to c} f(x)$					
f(c)					
Is f continuous at c ?					

(b) Does this function have any **HORIZONTAL** and/or **VERTICAL** asymptotes? If so, write the **appropriate limit(s)** to justify your answer.


[3]

[(10)]

[1]

[2]

[3]

3. Consider the two functions f(x) and g(x) whose graphs are given below:

(b) Compute $(g \circ f)(-2)$, if possible.

(c) Compute
$$\lim_{x \to 1} \left[(g/f)(x) + 3 \right].$$
 [2]

(d) Compute $\lim_{x \to -1} [f(x) + g(x)]$ by explicitly computing the one-sided limits.

(e) Is the function (f+g)(x) continuous at x = -1? Justify your answer by referencing the continuity [2] checklist.

4.	Evaluate the following limits. If the limit is infinite, write ∞ or $-\infty$. If the limit does not exist, write DNE. You must show <i>at least</i> one intermediate step to receive full credit.	[(10)]
	(a) $\lim_{x \to 3} \frac{2x^2 - 18}{x^2 + 2x - 15}$	[2]

(b)
$$\lim_{x \to \infty} -3x^2 + 3x - 6$$

[2]

[2]

(c) $\lim_{x \to -1} \frac{4x^2 - 4}{x^2 - x - 1}$

(d)
$$\lim_{x \to 7} \frac{x - 7}{\sqrt{x} - \sqrt{7}}$$
 [2]

(e)
$$\lim_{x \to 7^+} \frac{60}{7-x}$$
 [2]

5. Consider the following piecewise function:

$$f(x) = \begin{cases} \frac{x^2 + x - 2}{x + 2} & \text{if } x < -2\\ -3 & \text{if } x = -2\\ 3x^2 + 6x - 2 & \text{if } x > -2 \end{cases}$$

You must completely justify your answers to the following questions by explicitly evaluating appropriate limits. Is this function continuous at x = -2? At x = -2, is the function left-continuous, right-continuous, or neither?