By signing below, you attest that you have neither given nor received help of any kind on this exam.
Signature:
Printed Name: \qquad

Instructions: Show work to get full credit (the correct answer may NOT be enough). Do all your work on the paper provided. Write clearly! Double check your answers!

You will not receive full credit for using methods other than those discussed in class.

Calculators are not permitted.

Exam I

MAT 181-050 - Calculus I

Problem Number	Available Points	Your Points
1	8	
2	8	
3	10	
4	10	
5	4	
Total	40	

1. Consider the graph of $f(x)=2+\sqrt{2 x+4}$ below.

(a) Is $f(x)$ a polynomial, a rational, an algebraic, or a transcendental function?
(b) Compute and simplify the expression $f\left(\frac{1}{2} x^{2}\right)$.
(c) What is the domain and range of this function? Use interval notation.
(d) Find a formula for the inverse function $f^{-1}(x)$ and sketch it on the graph above, labeling at least two points on the graph of $y=f^{-1}(x)$.
(e) Compute $f^{-1}(4)$.
2. Consider the graph of the function $f(x)$ below:

(a) Use the graph to fill in the entries of the table below. If the limit exists, write the value of the limit. If the limit is infinite, write ∞ or $-\infty$. If the limit does not exist, write DNE. For the last row, write "Yes" or "No."

	$c=-2$	$c=-1$	$c=0$	$c=1$	$c=2$
$\lim _{x \rightarrow c^{-}} f(x)$					
$\lim _{x \rightarrow c^{+}} f(x)$					
$\lim _{x \rightarrow c} f(x)$					
$f(c)$					
Is f continuous at c ?					

(b) Does this function have any HORIZONTAL and/or VERTICAL asymptotes? If so, write the appropriate limit(s) to justify your answer.
3. Consider the two functions $f(x)$ and $g(x)$ whose graphs are given below:

(a) Compute $(g-f)(2)$.
(b) Compute $(g \circ f)(-2)$, if possible.
(c) Compute $\lim _{x \rightarrow 1}[(g / f)(x)+3]$.
(d) Compute $\lim _{x \rightarrow-1}[f(x)+g(x)]$ by explicitly computing the one-sided limits.
(e) Is the function $(f+g)(x)$ continuous at $x=-1$? Justify your answer by referencing the continuity checklist.
4. Evaluate the following limits. If the limit is infinite, write ∞ or $-\infty$. If the limit does not exist, write DNE. You must show at least one intermediate step to receive full credit.
(a) $\lim _{x \rightarrow 3} \frac{2 x^{2}-18}{x^{2}+2 x-15}$
(b) $\lim _{x \rightarrow \infty}-3 x^{2}+3 x-6$
(c) $\lim _{x \rightarrow-1} \frac{4 x^{2}-4}{x^{2}-x-1}$
(d) $\lim _{x \rightarrow 7} \frac{x-7}{\sqrt{x}-\sqrt{7}}$
(e) $\lim _{x \rightarrow 7^{+}} \frac{60}{7-x}$
5. Consider the following piecewise function:

$$
f(x)= \begin{cases}\frac{x^{2}+x-2}{x+2} & \text { if } x<-2 \\ -3 & \text { if } x=-2 \\ 3 x^{2}+6 x-2 & \text { if } x>-2\end{cases}
$$

You must completely justify your answers to the following questions by explicitly evaluating appropriate limits. Is this function continuous at $x=-2$? At $x=-2$, is the function left-continuous, rightcontinuous, or neither?

