By signing below, you attest that you have neither given nor received help of any kind on this exam.

Instructions: Show work to get full credit (the correct answer may NOT be enough). Do all your work on the paper provided. Write clearly! Double check your answers!

You will not receive full credit for using methods other than those discussed in class.

For any LP formulation, you do not have to put it in standard form. You also DO NOT have to organize all of the constraints into a nice square form. I will be grading the formulation on the correctness of the decision variables, objective function, and the constraints, not on the presentation or organization of the constraints.

Exam I

MAT 362 - Operations Research II

Problem Number	Available Points	Your Points
1	9	9
2	6	6
3	10	10
Total	25	25

1. Consider the following LP:

$$
\begin{aligned}
& \text { Minimize: } \quad z=2 x_{1}+3 x_{2} \\
& \text { Subject to: } 2 x_{1}+3 x_{2} \leq 30 \\
& x_{1}+2 x_{2} \geq 10 \\
& x_{1}-x_{2} \geq 0 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Determine whether or not the following pairs of primal-dual solutions are optimal:
(a) Find the dual LP.

$$
\begin{aligned}
& \text { Maximize } \omega=30 y_{1}+10 y_{2} \\
& \text { Subject to } 2 y_{1}+y_{2}+y_{3} \leq 2 \\
& 3 y_{1}+2 y_{2}-y_{3} \leq 3 \\
& y_{1} \leq 0, y_{2} \geq 0, y_{2} \geq 0
\end{aligned}
$$

(b) For each pair of primal and dual solutions below, determine if they are optimal. In either case, optimal or not, use appropriate justification.
i. Primal: $x_{1}=10, x_{2}=10 / 3$. Dual: $y_{1}=0, y_{2}=1, y_{3}=1$

- Both solutions are feasible but the buricturfauthin valves are not equal:

$$
\begin{aligned}
& \text { Privial } z=2(0)+3\left(\frac{10}{3}\right)=30 \text { - Not equal } \Rightarrow \text { Not optimal } \\
& \text { Dual } \omega=30(0)+10(1)=10
\end{aligned}
$$

ii. Primal: $x_{1}=20, x_{2}=10$. Dual: $y_{1}=1, y_{2}=4, y_{3}=0$

- Neither solution is feasible:

Primal Constraint 1: $2(20)+3(10)=70 * 30$ Infeasible \Rightarrow Not optimal
Dual Constraint 1: $2(1)+4+0=6 \not 2$ In
iii. Primal: $x_{1}=10 / 3, x_{2}=10 / 3$. Dual: $y_{1}=0, y_{2}=5 / 3, y_{3}=1 / 3$

- Both solutions are fusible ard the ofjecture fanctoon valves are equal:

$$
\left.\begin{array}{l}
\text { Primal } z=2\left(\frac{16}{3}\right)+3\left(\frac{10}{3}\right)=\frac{50}{3} \\
\text { Dual } w=30(6)+10\left(\frac{5}{3}\right)=\frac{50}{3}
\end{array}>E_{\text {qua }} \Rightarrow \text { Optima }\right)
$$

2. Consider the following LP and its optimal tableau below:

$$
\begin{array}{rr}
\text { Maximize: } & z=10 x_{1}+4 x_{2}+7 x_{3} \\
\text { Subject to: } & 3 x_{1}+x_{2}+2 x_{3} \leq 7 \\
& 2 x_{1}+x_{2}+3 x_{3} \leq 5 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Row	Basic	z	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	RHS
0	z	1	0	0	3	2	2	24
1	x_{1}	0	1	0	-1	1	-1	2
2	x_{2}	0	0	1	5	-2	3	1

For each sensitivity question below, use information about the dual problem to support your answer.
(a) Assuming the right-hand side of the first constraint represents a resource, what would the optimal objective function value be if only 3 units of this resource were available instead of 7 ? (Assume the current basis remains optimal.)

$$
\text { Deviation: } 7+\Delta b_{1}=3 \quad \Rightarrow \Delta b_{1}=-4 \quad \text { Deal: } y_{1}=2, y_{2}=2
$$

Assuming the buss remain optimal, we have

$$
a_{\text {lew }} z=\text { old } z+y_{1} \Delta b_{1}=24+2(-4)=16
$$

(b) The current value of c_{3} is 7 . For what values of the coefficient c_{3} does the current basis remain optimal?
Let c_{3} be the corffaimet valve, then the third dual constant becomes $z_{y}+3 y_{2}=c_{3}$. The basis rememis ghtwad \& the dual sulthomi remains feasintle, ie.

$$
2(2)+3(2) \geq c_{3} \Rightarrow c_{3} \leq 10
$$

(c) Suppose we add a new variable, x_{4}, to the primal problem such that $c_{4}=5, a_{14}=4$ and $a_{24}=-2$. Does the current basis remain optimal?
Wt is new variable, we have a new dual constrañat:

$$
4 y_{1}-2 y_{2} \geq 5
$$

The basis remains aptrad if the dual soldumin seititiors this constant.

$$
4(2)-2(2) \stackrel{\div}{5} \Rightarrow 4 \neq 5
$$

The bass is no layer optimal.
3. Consider the unbalanced transportation problem given in the table. If a unit from a source is not shipped out (to any of the destinations), a storage cost is incurred at the rate of $\$ 5, \$ 4$, and $\$ 3$ per unit for sources 1,2 , and 3 , respectively. Additionally, all the supply at source 2 must be shipped out completely to make room for a new product.

Table At Trawspartation Cooks

(a) Balance the problem by adding a dummy destination and appropriately identify the costs. Then, establish the initial feasible solution using the Northwest-Corner method.

(b) Solve the problem with a sequence of iterations using the Transportation Simplex method. Please use the grid tableaus provided. Report your optimal solution and the objective function value below.

$$
x_{13}=20, x_{21}=20, x_{22}=20, x_{31}=10, x_{34}=20
$$

The rest are zero.

$$
\text { Copt }=240 \quad \text { (Alternatui optioning exist.) }
$$

