Riemann Sun approximisation to the area bounded by the curve f(x) and the x-axis is given by the following

$$[Area] \approx \Delta x \cdot f(x_{i}^{*}) + \Delta x \cdot f(x_{i}^{*}) + \cdots + \Delta x \cdot f(x_{n}^{*})$$

where n is the # of subintervals, $\Delta x = \frac{b-a}{n}$ is the width of each subinterval, and the is a sample part in the 12th sub-interval. It is the "index" which ranges from 1 to n.



with: Ax = b-a

Richmann Sum: Ax f(x;) + bx f(x;) + ...+ &x f(x;) + ...+ bx f(x;) + ...+ bx f(x;)

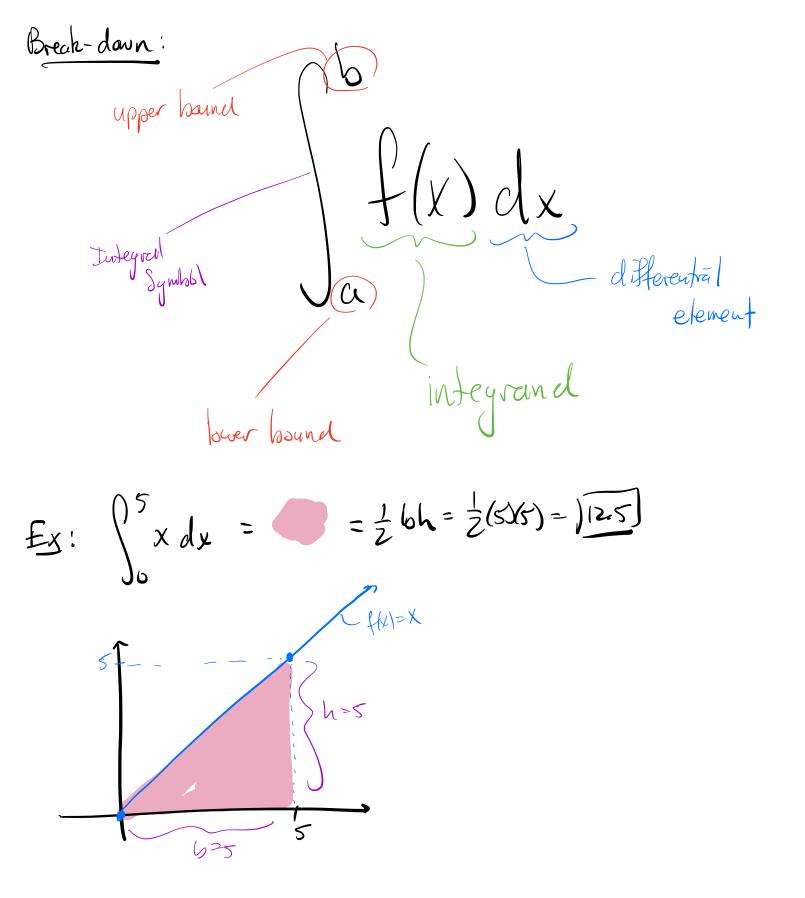
• Summation whether is The Riemann Sum can be written capacity
as

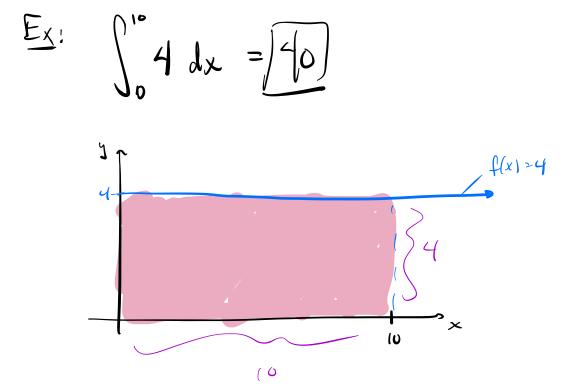
$$f(k_1) \cdot dx + f(k_2) \cdot dx + \dots + f(k_n) \cdot \Delta x = \prod_{k=1}^{n} f(k_1) \cdot \Delta x$$

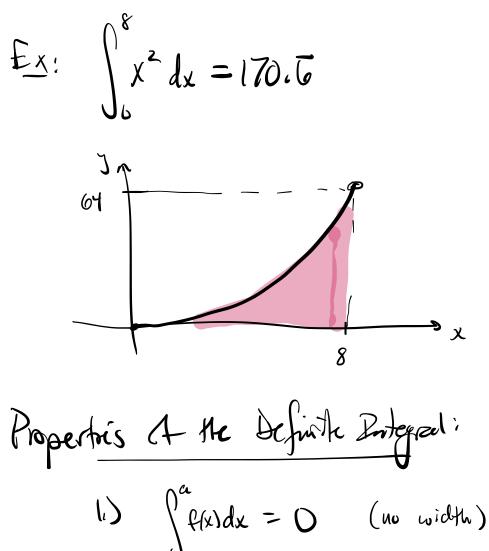
 $f(k_1) \cdot dx + f(k_2) \cdot dx + \dots + f(k_n) \cdot \Delta x = \prod_{k=1}^{n} f(k_1) \cdot \Delta x$
 $f(k_1) \cdot dx + f(k_2) \cdot dx + \dots + f(k_n) \cdot \Delta x = \prod_{k=1}^{n} f(k_1) \cdot \Delta x$
 $f(k_1) \cdot dx + f(k_2) \cdot dx + \dots + f(k_n) \cdot \Delta x = \prod_{k=1}^{n} f(k_1) \cdot \Delta x$
 $f(k_1) \cdot dx + f(k_2) \cdot dx + \dots + f(k_n) \cdot \Delta x = \prod_{k=1}^{n} f(k_1) \cdot \Delta x$
 $f(k_1) \cdot dx + f(k_2) \cdot dx + \dots + f(k_n) \cdot \Delta x = \prod_{k=1}^{n} f(k_1) \cdot \Delta x$
 $f(k_1) \cdot dx + f(k_2) \cdot dx + \dots + f(k_n) \cdot \Delta x = \prod_{k=1}^{n} f(k_1) \cdot \Delta x$
 $f(k_1) \cdot dx + f(k_2) \cdot dx + \dots + f(k_n) \cdot \Delta x = \prod_{k=1}^{n} f(k_1) \cdot \Delta x$
 $f(k_1) \cdot dx + f(k_2) \cdot dx + \dots + f(k_n) \cdot \Delta x = \prod_{k=1}^{n} f(k_1) \cdot \Delta x$
 $f(k_1) \cdot dx + f(k_1) \cdot dx = \prod_{k=1}^{n} f(k_1) \cdot dx =$

Greneral, Right-Hand Premann Sum:

Consider a function
$$f(x)$$
 on the interval $[a,b]$. Let n
be the number of rectangles. Then $\Delta x = \frac{b-a}{n}$ is the width
 A the subinition only. We use the right endpoint of each subinitional
as the sample point, given by
 $X_{12}^{*} = a + k \Delta x$, for $k \ge 1, 2, ..., n$.
The Right thad Remain Sum with n subinitionals is
 $R_{11} = \sum_{k=1}^{n} f(X_{12}^{*}) \Delta x$.
The area under $f(x)$ on $[a,b]$ is approximited by Rn.
Section S.Z.: The Definite Dirtegral
Recap: Area "under" the curve $y=f(x)$ on $[a,b]$.







2.)
$$\int_{a}^{b} f(x) dx = - \int_{b}^{a} f(x) dx$$

3.) Sumlbills & two Artes:

$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$
4.) Const. Mult. Rule:

$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$
($\int_{a}^{b} f(x) + \dots + f(x) dx = \int_{a}^{b} f(x) dx + \dots + \int_{a}^{b} f(x) dx$
(c twiss
5.) Way uitsgred can be "split" up in the atleast two
other areas: Let c be a # between a and b:

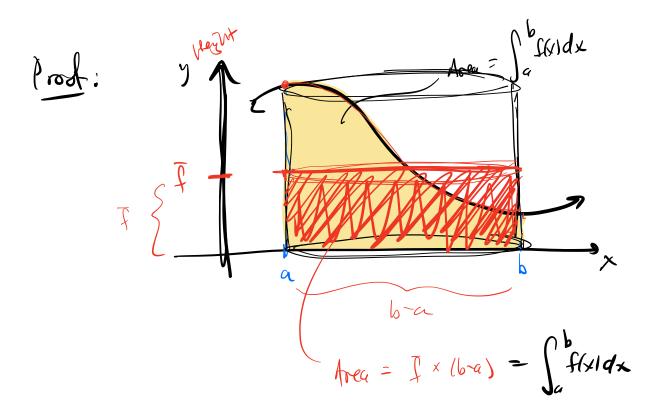
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

$$f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

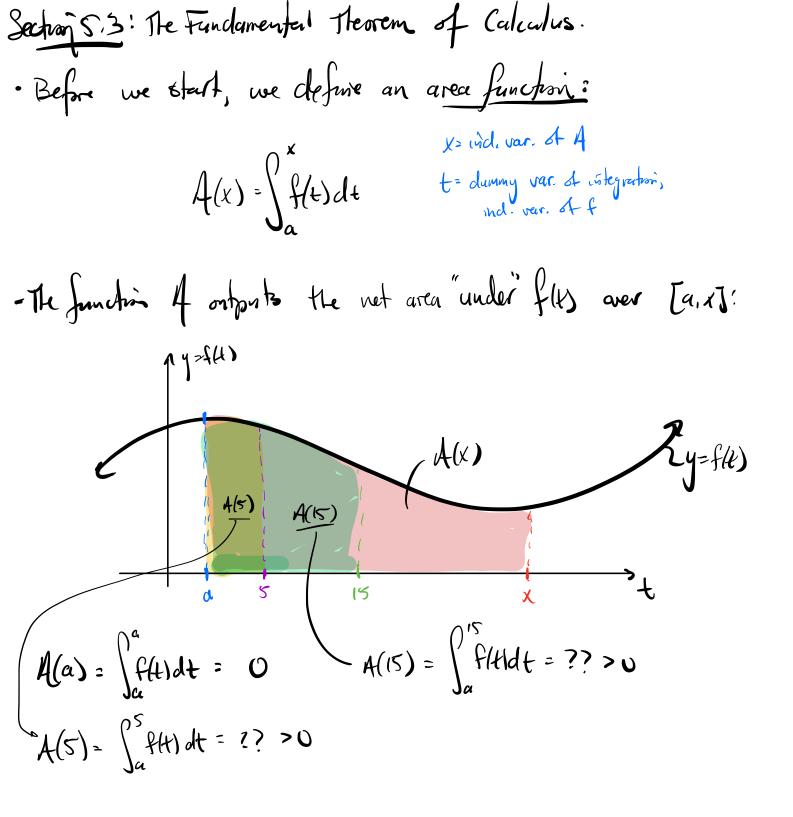
$$f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

$$f(x) dx = \int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$

Det: The average vedere
$$\frac{1}{4}$$
 a function over the interval Tab],
denoted by \overline{f} , is given by
 $\overline{f} = \frac{1}{b-a} \cdot \int_{a}^{b} f(x) dx$

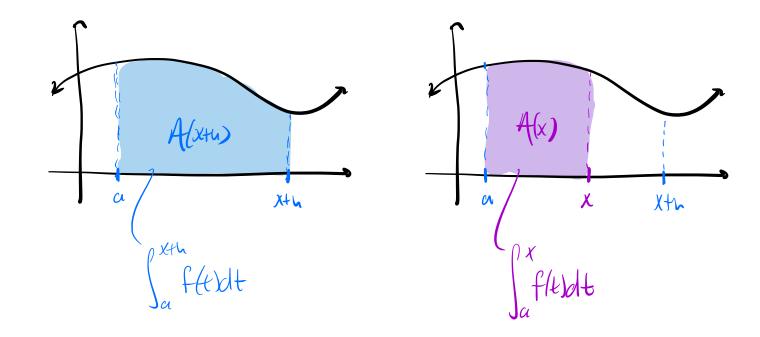


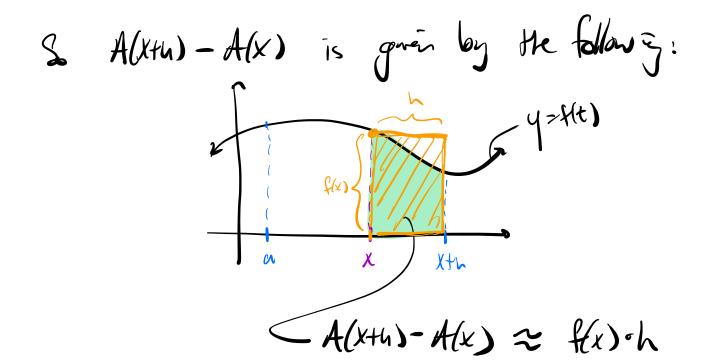
Recap:
$$\int_{a}^{b} f(x) dx =$$
"He signed area bounded between
He curve yzf(x) and He x-axis
on the interval [4,6]."



FTC, Pat1: the area function
$$f(x) = \int_{a}^{x} f(x) dx$$

and inderviewing of $f(x)$ is.
 $A'(x) = f(x)$.





This approximation becomes exact as how. We have A(x+4)-A(x) ~ f(x).h $\frac{A(x+h)-A(x)}{h} \approx f(x)$ **~)** $\lim_{h \to 0} \frac{A(x+h) - A(x)}{h} = \lim_{h \to 0} \frac{f(x)}{h}$ A'(x) = f(x)and so A(x) is an antidometry of flx). This Hearen says that the derivative "undoes" the integral ie. Hey are inverse operations. $\frac{d}{dx}\left(\int_{a}^{x} f(t) dt\right) = f(x)$ AKS

Ex: Let $A(x) = \int_{a}^{x} (t^2 + 2t + 1) dt$. Then $A'(x) = x^2 + 3x + 1$.

FTC, Part 2: If
$$F(x)$$
 is any antiderworking of $f(x)$, Hen

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Prof: Let
$$A(x) = \int_{a}^{x} f(t) dt$$
 be the area function. $A(x)$ is
an autidenvertise of $f(x)$. All autodenvirtures differ
by a constant. Any autodenvirture, $F(x)$, has the form
 $F(x) = \int_{a}^{x} f(t) dt + C$

Able:
$$F(b) - F(a) = F(b) \Big|_{a}^{b}$$

 $2''F(b)$ evaluated at b minutes
 $F(b)$ evaluated at a."

$$\frac{1}{2} \sum_{a} \frac{1}{2} \sum_{b} \frac{1}{2} \sum_{b}$$

Sector: 5.4: Indefinite Integral & u-substitution
Recall: The notation for the derivative:
Nextor
$$f'(z) = \int_{-\infty}^{\infty} He derivative (slope) at x=2^{\prime\prime}$$

Letoniz $f'(z) = \int_{-\infty}^{\infty} He derivative (slope) at x=2^{\prime\prime}$

Neutron
$$f'(x) =$$

Lichniz $dy =$ "the derivative function"
Lichniz $dx =$

Mix ·
$$\frac{d}{dx}(f(x)) = "do the densitie of f(x)"$$

• Notestion for critiquestion:
Uchiefe
$$\int_{a}^{b} f(x) dx = "retarea under f(x) = (a,b)"$$

Totegral $\int_{a}^{b} f(x) dx = F(b) - F(a)$

Pudefisite

$$F_{x}$$
 · $\int f(x) dx =$ "the auti-densitive function of $f(x)$ "
 $= F(x) + C$

Recall: Basis Dutegration is essentially notiving that
the withegrand is a demonstruce i.e.
$$\int f'(x) dx = f(x) + C$$

U-Sub: used an integrands of the following form:

$$\int f'(g(x)) g'(x) dx = f(g(x)) + C.$$

$$\int u du$$

$$(u = g(x) =) \frac{du}{dx} = g'(u) =) \frac{du}{dx} = g'(u) dx$$

 $\int f'(u) \, du = f(u) + c$