MAT 106 -010 - Trigonometry
Berks Emerrik
CHAPER 2-Avalyprial Trigonometry
Section 2.1: Fundamental Idlantities

- The most notalole identity is Pythagorean's Felentity:
(mani)

$$
\begin{aligned}
\cos ^{2}(\theta)+\sin ^{2}(\theta) & =1 \\
1+\tan ^{2}(\theta) & =\sec ^{2}(\theta) \\
\cot ^{2}(\theta)+1 & =\csc ^{2}(\theta)
\end{aligned}
$$

(Vossin 1)

- In this section, we use identitios to suppity triy expressions or to create rew identifrés.
webbAssin
- Due Date now is wed Nov 16 at $11: 59$ pm.

$$
L_{9} 1.5,1,6, \text { P.9, P.10, 1.7, 2.1, } 2.2
$$

- Exam III next Friday uOv 18 at 10 AM AF 102

Ex: $\tan \left(\arcsin \left(\frac{\alpha_{2}}{2}\right)\right)=\tan (\pi / 4)=1$

Ex: $\tan (\arcsin (3 / 5))=\tan (\theta)=\frac{3}{4}$

$$
\sin (\theta)=\frac{3}{5}
$$

- wednesday Cuebiasoigh Due $1.5,1,6,1.7$, DP, P.10, $2.1,2.2$
- Froduy - Test III $1.7, P, 9, P, 10,2.1,2.2$ AF 10210 Am

Section 22: Verity ing Trig Identities

- For verifying identitrès:
1.) Work with only one side of the equation (the more complicated side) until you stuck.
2.) look for opportunities to factor common elements of create a common denominator.
3.) look for opportunities to use Pythagorean's Identity $\left(\cos ^{2}(\theta)+\sin ^{-2}(\theta)=1\right)$.
4.) If Steps 1-3 fail, convert trig express minis
to sure and cosine. Use reciprocal identities.
5.) Do something.

En: verity the following: $\frac{\csc ^{2}(\theta) \tan ^{2}(\theta)}{\text { IHS }}=\underbrace{\sec ^{2}(\theta)}_{\text {RUS }}$
LES: $\csc ^{2}(\theta) \tan ^{2}(\theta)=\frac{1}{\sin ^{2}(\theta)} \cdot \tan ^{2}(\theta)$

$$
\begin{aligned}
& =\frac{1}{\sin ^{2}(\theta)} \cdot \frac{\sin ^{2}(\theta)}{\cos ^{2}(\theta)} \\
& =\frac{1}{\cos ^{2}(\theta)} \\
& =\sec ^{2}(\theta): \text { RHo }
\end{aligned}
$$

- Using the graphs of sine, cosine, ard tangent, we can come up with the following symmetry identities:
- Even functions $f(x)=\cos (x)$ is even (y-axis symmetric)

$$
\cos (\theta)=\cos (-\theta)
$$

- odd Functions: $f(x)=\sin (x)$ and $f(x)=\tan (x)$ are odd (rotetonially symmetric)

$$
-\sin (\theta)=\sin (-\theta)-\tan (\theta)=\tan (-\theta)
$$

Section 2.3: Solving Trigonometric Equations

- Let x be an unknown real number, then solve the trice equation for x :

$$
\sin (x)=\frac{1}{2}
$$

were searching for all angles such that since of treat angle results in $1 / 2$. Yuswer:

There's an infante list of possible answers. We can write our answers in compact form:

$$
x=\frac{\pi}{6}+n \cdot 2 \pi \quad x=\frac{5 \pi}{6}+n \cdot 2 \pi
$$

where n is any integer. $\{\ldots 3,-2,-1,0,1,2, \ldots\}$

Ex: Suppose $x \in[0,2 \pi)$ (within one pasitioi rotation). Now solve

$$
\sin (x)=\frac{1}{2}
$$

Solution: $X=\frac{\pi}{6}, \frac{5 \pi}{6}$ quill ausurs with is

Ex: Suppose $x \in[0,2 \pi)$. Solve

$$
\begin{gathered}
2 \sin (x)-1=0 \\
2 \sin (x)=1 \\
\sin (x)=\frac{1}{2} \\
\Rightarrow x=\frac{\pi}{6}, \frac{5 \pi}{6}
\end{gathered}
$$

Section 2.4: Sum t Difference Identities

- Sum ξ Difference Identities: let u and v be any tor angles.

$$
\begin{aligned}
& \text { - } \begin{aligned}
& \sin (u+v)=\sin (u) \cos (v)+\cos (u) \sin (v) \\
&-\sin (u-v)=\sin (u) \cos (v)-\cos (u) \sin (v) \\
&- \cos (u+v) \\
&-\cos (u) \cos (v)-\sin (u) \sin (v) \\
&-\cos (u) \cos (v)+\sin (u) \sin (v)
\end{aligned}
\end{aligned}
$$

Ex: Calculate $\sin \left(75^{\circ}\right)$ exactly.

$$
\begin{aligned}
\sin \left(75^{\circ}\right) & =\sin \left(45^{\circ}+30^{\circ}\right) \\
& =\sin \left(45^{\circ}\right) \cos \left(30^{\circ}\right)+\cos \left(45^{\circ}\right) \sin \left(30^{\circ}\right) \\
& =\sin (\pi / 4) \cos (\pi / 6)+\cos (\pi / 4) \sin (\pi / 6) \\
& =\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{1}{2} \\
& =\frac{\sqrt{6}}{4}+\frac{\sqrt{2}}{4} \\
\sin \left(75^{\circ}\right) & =\frac{\sqrt{6}+\sqrt{2}}{4} \quad \frac{\pi}{12}=\frac{4 \pi}{12}-\frac{3 \pi}{12} \\
& =\frac{\pi}{3}-\frac{\pi}{4}
\end{aligned}
$$

Ex: Calculate $\cos (\pi / 12)$ exactly.

$$
\begin{aligned}
\cos (\pi / 12) & =\cos \left(\frac{\pi}{3}-\frac{\pi}{4}\right) \\
& =\cos (\pi / 3) \cos (\pi / 4)+\sin (\pi / 3) \sin (\pi / 4) \\
& =\frac{1}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} \\
& =\frac{\sqrt{2}}{4}+\frac{\sqrt{6}}{4} \\
& =\frac{\sqrt{2}+\sqrt{6}}{4}
\end{aligned}
$$

- Sum/Dfference Identities for tangent:

$$
\begin{aligned}
-\tan (u+v) & =\frac{\tan (u)+\tan (v)}{1-\tan (u) \tan (v)} \\
-\tan (u-v) & =\frac{\tan (u)-\tan (v)}{1+\tan (u) \tan (v)}
\end{aligned}
$$

Ex: $\tan \left(75^{\circ}\right)=\tan \left(30^{\circ}+45^{\circ}\right)$

$$
\begin{aligned}
& =\frac{\tan \left(30^{\circ}\right)+\tan \left(45^{\circ}\right)}{1-\tan \left(30^{\circ}\right) \tan \left(45^{\circ}\right)} \\
& =\frac{1 / \sqrt{3}+1}{1-\left(\frac{1}{\sqrt{3}}\right)(1)} \\
& =\frac{\frac{1}{\sqrt{3}}+1}{1-\frac{1}{\sqrt{3}}}=\frac{\frac{1+\sqrt{3}}{\sqrt{3}}}{\frac{\sqrt{3}-1}{\sqrt{3}}}=\frac{1+\sqrt{3}}{\sqrt{3}-1}
\end{aligned}
$$

Quit 10: wednesday, Dec 7, In class
webAbsin: Friday, Dec 9, $11: 59$ PM.
Fivis Exam: Mondey, Dec 12, 8:00 AM, AF 102

$$
\zeta=30 \% \text { is on } 2.2-2.5
$$

$$
\approx 70 \% \text { is from premoins staff. }
$$

Study Past Exems.

Sectori 2.5: Double-Angle Identities, Power-Reducing Identitres, and Prodact-to-Sum Identities

- Double-Aagle Formulas:

$$
\begin{aligned}
-\sin (2 x) & =2 \sin (x) \cos (x) \\
-\cos (2 x) & =\cos ^{2}(x)-\sin ^{2}(x) \\
& =2 \cos ^{2}(x)-1 \\
& =1-2 \sin ^{2}(x)
\end{aligned}
$$

$$
-\tan (2 x)=\frac{2 \tan (x)}{1-\tan ^{2}(x)}
$$

Final Exam: 12 questions
AF 162.5 are from 2.2-2.5
$8 \mathrm{AM}, 7$ are from shaft from $P, 1,2.1$
(Dun- Holes!)
Section 2.5: Contained

- Pover-Reducinzy Identities:
- $\sin ^{2}(x)=\frac{1}{2}-\frac{1}{2} \cos (2 x)$
- $\cos ^{2}(x)=\frac{1}{2}+\frac{1}{2} \cos (2 x)$
- $\tan ^{2}(x)=\frac{1-\cos (2 x)}{1+\cos (2 x)}$

Product-b-Sum Deleutifís:

- $\sin (u) \sin (v)=\frac{1}{2} \cos (u-v)-\frac{1}{2} \cos (u+v)$
- $\cos (u) \cos (v)=\frac{1}{2} \cos (u-v)+\frac{1}{2} \cos (u+v)$
- $\sin (u) \cos (v)=\frac{1}{2} \sin (u+v)+\frac{1}{2} \sin (u-v)$
- $\cos (u) \sin (v)=\frac{1}{2} \sin (u+v)-\frac{1}{2} \sin (u-v)$

