MAT 362-Oppactions Research II
Brook u Emeñok
CHAPTER 14-Game Theory
Section $14_{1} 1$: Tur-Person Zero-Sum and Constant-Sum Games:
Saddle Points

- In every problem we have encountered thus far in this class, we have been making decisions as a single decsision-yaker - wee not taken ruts consorteration the action of otter ontorte decison-makers who ray or may not hare a similar objective.
- Game theory deals with decision situations in which two or more intelligent opponents with conflicting objectives are attempting to outdo one a norther.
- well consider tro-player zero-sum games:
- Tus players (opponents) are each able to rttentity a strategy from a list of known strategies.
- Each strategy has an associated payoff that one player will pay to the otter. A gain by one player is an identrioul loss to the otter player - zevo-sum game.
- Player A (the row player) has a total of m strategres to choose from: $A_{1}, A_{2}, \ldots, A_{m}$. Player is (the column player) has n strategies $B_{1}, B_{2} \ldots B_{n}$.
- The game is constructed via a reward Matrix in terms of the payoff to slayer A (the row player):

$P_{i j}=$ payoff to player A from player of using strategy A_{i} al player B usury strategy B_{j}
- To analyze the best strategy for the gave, we make a Key assumption:

Each player chooses a best strategy, given thant the opponent knows the strategy they have chosen.
Unclear this assumption, each player will tipreailly choose the "best of the worst" stateyres.

- Player A_{1} who is trying to max the payout to A, will choose the maximin value from the row minimums

$$
\max _{i}(\underbrace{\min _{j}\left(P_{i j}\right)}) \longleftarrow \operatorname{Maximin}^{\max }
$$

Set of all row minimums ire.
set of all minimum gains for Player A

- Player B, who is trying to min the payout to A, will choose the minimum value from the column maxithuns

$$
\min _{j}^{\min _{j}(\underbrace{\max _{i}\left(P_{i j}\right)}_{\text {St of all column maximinums ae. }})} \text { set of all maximum loses for Player } B
$$

WS 14.1 \#1-74 wok with a zero sum ard constant sum games

- If the valves of the minima ard maximin are equal, then the value of the game is this common value, ard both players are using a pure saddle post solution.

Section 141,2: Two Person Zero-Sum Games: Randomized Strategies, Domisection, and Gaphrial Solution

- In the case of a pare sueddre point solution, loot players choose a single strategy that yreteds the same value (maximin $=\operatorname{minimax}$). This is called a pure strategy (wise. Player A plays A_{2} with probability 1 ave Player B plays bs with probability 1) as opposed to a meed strategy, where a player can play a variety of strategies with different problubilisties.
- The optimal saddle ponst solution means that if either player denvites from the strategy, the other player will have an advantage or a worse payout will ensue.
- A saddle point solution reed not be pare.

USS 14.2 \# 1 wok with the teads/tails game.

- In any game, the value of the game, doubted by v, is between the Maximin and minawrix:

$$
\max _{i}\left(\min _{j}(\operatorname{poj})\right) \leq V \leq \min _{j}\left(\max _{v}\left(p_{p j}\right)\right)
$$

If a pure saddle point solutori dasi't cxis't, we employ a mixed strategy:
Plages A: $X_{i}=$ probaribility the at strategy A_{i} is played
Player: $y_{j}=$ probability that strategy B_{j} is played.
If at least one player has exactly 2 strategres, then the problem can be solved graphrilly.

- Note, in a mired strategy game, we assume the opponent will stall choose a pure strategy!
WI $14,2 \# 1, \# 2$ able with mixed strategy games.
- Essentritly, we plot A's expected pay oft based on B's pare otrategers

Section 14.3: Linear Proyramminy and Zero Sum Games

- Using the orten of a mixied strateyy, we can formuleate an LP far each player in a geveral two-player zero-sum ganne!

Plager B strategre's.

$$
B_{1} B_{2} \cdots B_{n}
$$

Plager A's Goal

$$
\begin{array}{cl}
\frac{B_{1}^{\prime} s \text { shateyy }}{} & \frac{A_{s}^{\prime} \text { Expectution }}{m} \\
B_{1}: & \sum_{i=1}^{m} p_{i 1} x_{i} \\
B_{2}: & \sum_{i=1}^{m} p_{i 2} x_{i} \\
\vdots & B_{n}: \\
\sum_{i=1}^{m} p_{i n} x_{i}
\end{array}
$$

Compute maximin

$$
\max _{x_{i}}\{\underbrace{\min \left(\sum_{i} p_{u} x_{i}, \ldots, \sum_{i} p_{i n} x_{i}\right)}_{\text {Defin this as } v}\}
$$

Plager A_{s}^{\prime} Oby. Fun
Maximize $z=V$

Player B's Goal
B's strateyy A's Expectition

$A_{2}: \quad \sum_{j=1}^{n} P_{i j y}$
$A_{m}: \quad \sum_{j=1}^{n} P_{m j} y_{i}$
Compute Miximax

Player B's Oby. Fun
Minimize $z=\omega$

Player Ats Constants
Susie $V=\min \left(\sum_{i} p_{i i} x_{i}, \ldots, \sum_{i} \operatorname{pin} x_{i}\right)$ we have

$$
\begin{gathered}
V \leq \sum_{i=1}^{m} p_{i 1} x_{i} \\
V \leq \sum_{i=1}^{m} p_{i 2} x_{i} \\
\vdots \\
V \leq \sum_{i=1}^{m} p_{i n} x_{i} \\
\sum_{i=1}^{m} x_{i}=1 \\
x_{i} \geq 0, V=\text { uss }
\end{gathered}
$$

The opotinael valve V is Player A 's value of the game.

Player B's Constants
Sluice $\omega=\max \left(\sum_{i}^{i} P_{i} y_{i}, \ldots, \sum_{i} P_{\operatorname{mij}} j_{i}\right)$ we have

$$
\sum_{j=1}^{n}
$$

$$
\sum_{j=1}^{n}
$$

\vdots
$\sum_{j=1}^{n}$

$$
\begin{aligned}
& \sum_{j=1}^{n} y_{j}=1 \\
& y_{j} \geq 0, w=\operatorname{urs}
\end{aligned}
$$

The optaneil value ω is Player B's value of the game.

At optimality, $r=\omega$
Player A^{\prime} s $L P$ is Ne dual problem to Player B's LP !
HS 14,3 \#1-\#3 walk w org wi formulating a zero-Sum breve.

